Deliverable Report Last update 07/31/2012 Version 2

Nano Scale Disruptive Silicon-Plasmonic Platform for Chipto-Chip Interconnection

NAVOLCHI WEB-Site

Deliverable no.:	D1.1
Due date:	11/30/2011
Actual Submission date:	07/31/2012
Authors:	KIT
Work package(s):	WP1
Distribution level:	PU^1
Nature:	WEB-page

List of Partners concerned

Partner number	Partner name	Partner short name	Country	Date enter project	Date exit project
1	Karlsruher Institut für Technologie	KIT	Germany	M1	M36
2	INTERUNIVERSITAIR MICRO- ELECTRONICA CENTRUM VZW	IMEC	Belgium	M1	M36
3	TECHNISCHE UNIVERSITEIT EINDHOVEN	TU/e	Netherlands	M1	M36
4	RESEARCH AND EDUCATION LABORATORY IN INFORMATION TECHNOLOGIES	AIT	Greece	M1	M36
5	UNIVERSITAT DE VALENCIA	UVEG	Spain	M1	M36
6	STMICROELECTRONICS SRL	ST	Italy	M1	M36
7	UNIVERSITEIT GENT	UGent	Belgium	M1	M36

1

 $[\]mathbf{PU} = \mathbf{Public}$

PP = Restricted to other programme participants (including the Commission Services)

RE = Restricted to a group specified by the consortium (including the Commission Services)

CO = Confidential, only for members of the consortium (including the Commission Services)

FP7-ICT-2011-7 Project-No. 288869 NAVOLCHI – D1.1 Deliverable Report Last update 07/31/2012 Version 2

Deliverable Responsible

Organization:	Karlsruhe Institute of Technology
Contact Person:	Martin Sommer
Address:	Institute of Microstructure Technology
	Hermann-von-Helmholtz-Platz 1, Building 321
	76344 Eggenstein-Leopoldshafen
	Germany
Phone:	+49 (0)721 - 608 22664
Fax:	+49 (0)721 - 608 26667
E-mail:	martin.sommer@kit.edu

Executive Summary

This document shall incorporate (all) rules procedures concerning the technical and administrative management of the project and is therefore to be updated on a regular basis. Please look at <u>www.navolchi.eu</u> regularly for the latest version.

Change Records

Version	Date	Changes	Author
0.1 (draft)	2011-11-30	Start	Martin Sommer
1 (submission)	2011-11-30	First final version	Martin Sommer
2 (submission)	2012-07-26	S. Mühlbrandt added as web- master	Martin Sommer

Contents

NAVOLCHI-WEB-SITE	4
CommonInformation	4
Public Area	
Restricted Area	

NAVOLCHI-WEB-Site

CommonInformation

KIT was engaged to implement a projects WEB-site on which the ideas of the project are published as well as to establish a common platform for the partners where useful information is gathered and shared. This WEB-site can be found on <u>www.navolchi.eu</u>. It was started immediately at the beginning of the project and is updated continuously.

WEB-Masters, and therefore responsible for the site content are:

Martin Sommer Tel. +49 721 608-22664 E-Mail: <u>martin.sommer@kit.edu</u>

and

Sascha Mühlbrandt Tel. +49 721 608-23129 E-Mail: <u>sascha.muehlbrandt@kit.edu</u>

Physically, the server for the site is located at the Steinbuch Center for Computing (SCC) at the KIT:

Steinbuch Center for Computing D-76128 Karlsruhe Tel. +49 721 608-25601 E-Mail: contact∂scc kit edu

Public Area

The WEB-site is separated into a public part containing the following pages:

- Introduction: Basic project information (see Figure 1),
- **Partners**: An introduction into the project partners,
- **<u>Publications</u>**: A list of publications and
- **Positions**: the offer of employment within the project.

	Partners	Publications	Positions	Restricte	d
		- NAVOLCI	HI -		
	Nano Scale Di for Ch	sruptive Silico ip-to-Chip Int		Platform	
ain Objectives					
stem-in-package inte	explores, develops a connection platforn ectrical and optical in	n to overcome the	bandwidth, foot		
e technology exploits ismon polaritons to b the RC constants. K odulators, amplifiers	s the ultra-compact build plasmonic trans ey elements develop	dimensions and fa ceivers with a few ed in this project	st electronic inte square-micron f	ootprints and	d speeds only limite
ncept aims at overco is more fundamental able new applications	ming the challenges as the availability of in sensing, biomedi	posed by the nee cheap miniaturize cal testing and ma	d for massive pa d transmitters ar	rallel interchip d detectors	o communications. Y on a single chip will
procept aims at overco is more fundamental nable new applications etectors are need to e conomically, the sugge otoelectronic function: e silicon industry. In e dimension 100 time	ming the challenges as the availability of s in sensing, biomedi e.g. analyze samples ested technology is a s on Si substrates a addition, the design es smaller over conve	posed by the nee cheap miniaturize cal testing and ma a viable approach s it relies to the m and production co entional devices th	d for massive paid transmitters ar iny other fields w for a massive mo ost part on the st of plasmonic o	rallel interchip d detectors here masses nolithic integ standardized devices are e:	o communications. Y on a single chip will c of lasers and ration of processes offered b xtremely low and wi
procept aims at overco is more fundamental hable new applications etectors are need to e conomically, the sugge ptoelectronic function he silicon industry. In the dimension 100 time ver short ranges of m	ming the challenges as the availability of s in sensing, biomedi e.g. analyze samples ested technology is a s on Si substrates a addition, the design es smaller over conve	posed by the nee cheap miniaturize cal testing and ma a viable approach s it relies to the m and production co entional devices th	d for massive paid transmitters ar iny other fields w for a massive mo ost part on the st of plasmonic o	rallel interchip d detectors here masses nolithic integ standardized devices are e:	o communications. Y on a single chip will c of lasers and ration of processes offered b xtremely low and wi
he transceivers will be oncept aims at overco is more fundamental nable new applications etectors are need to e conomically, the sugg, ptoelectronic function: ne silicon industry. In the dimension 100 time ver short ranges of m at a Glance Project Coordinator:	ming the challenges as the availability of s in sensing, biomedi e.g. analyze samples ested technology is a s on Si substrates a addition, the design es smaller over conve	posed by the nee cheap miniaturize cal testing and ma a viable approach s it relies to the m and production co intional devices the r systems.	d for massive paid transmitters ar iny other fields w for a massive mo ost part on the st of plasmonic o	rallel interchip d detectors here masses nolithic integ standardized devices are e:	o communications. Y on a single chip will c of lasers and ration of processes offered b xtremely low and wi
Incept aims at overco is more fundamental lable new applications etectors are need to e conomically, the sugge toelectronic function: e silicon industry. In e dimension 100 time ver short ranges of m t a Glance	ming the challenges as the availability of s in sensing, biomedi e.g. analyze samples ested technology is a s on Si substrates a addition, the design addition, the design s smaller over conve- nulti-processor duste Prof. Dr. Juerg Leu Karlsruhe Institut Tel: +49 721 608 +49 721 608	posed by the nee cheap miniaturize cal testing and ma a viable approach s it relies to the m and production co intional devices the r systems.	d for massive paid transmitters ar iny other fields w for a massive mo ost part on the st of plasmonic o	rallel interchip d detectors here masses nolithic integ standardized devices are e:	o communications. Y on a single chip will c of lasers and ration of processes offered b xtremely low and wi
ncept aims at overco is more fundamental lable new applications tectors are need to e conomically, the sugge toelectronic function e silicon industry. In e dimension 100 time rer short ranges of m t a Glance	ming the challenges as the availability of s in sensing, biomedi e.g. analyze samples ested technology is a s on Si substrates a addition, the design s smaller over conve- nulti-processor duste Prof. Dr. Juerg Leu Karlsruhe Institut Tel: +49 721 608 Fax: +49 721 608	posed by the nee cheap miniaturize cal testing and ma a viable approach s it relies to the m and production co intional devices the r systems. thold e of Technology 42480 22740 942480	d for massive pai d transmitters ar iny other fields w for a massive mo ost part on the s ist of plasmonic o ey will require mo seventh FRAMEW	rallel interchip d detectors i here masses nolithic integ standardized devices are e uch lower end	o communications. Y on a single chip will c of lasers and ration of processes offered b xtremely low and wi
ncept aims at overco s more fundamental able new applications tectors are need to e onomically, the sugge toelectronic function e silicon industry. In e dimension 100 time er short ranges of m a Glance oject Coordinator:	ming the challenges as the availability of s in sensing, biomedi e.g. analyze samples ested technology is a s on Si substrates a addition, the design addition, the design s smaller over conve ulti-processor cluster Prof. Dr. Juerg Leu Karlsruhe Institut Tel: +49 721 608 +49 721 608 Fax: +49 721 608	posed by the nee cheap miniaturize cal testing and ma a viable approach s it relies to the m and production co intional devices the r systems. thold e of Technology 42480 22740 942480	d for massive paid d transmitters ar iny other fields w for a massive mo ost part on the s ost of plasmonic ey will require mo	rallel interchip d detectors i here masses nolithic integ standardized devices are e uch lower end	o communications. Y on a single chip will c of lasers and ration of processes offered b xtremely low and wi

Figure 1: The NAVOLCHI home page.

Restricted Area

Additionally to the public part, a part with restricted access was established for project partners only. The latter covers the following subtopics (see Figure 2):

- <u>TelCos and Meetings</u>: A collection of presentations given from the partners in meetings and phone conferences. Beneath archiving purposes, this collection is helpful during the phone conferences for distributing the presentations to all partners.
- <u>Deliverables</u> and <u>Milestones</u>: Two lists containing deliverables and milestones including their actual state. Both lists can be ordered by deliverable/milestone respectively or by date.
- <u>Contact and Communication</u>: A page with a full contact list, e-mail lists and useful information how to join phone conferences.
- **<u>Project Documents</u>**: A page with documents important for internal use, mainly the 'Project Reference Manual' and the 'Quality Assurance Manual'. Templates for internal documents are also available on this site.
- <u>EC-related Documents</u>: A further site holds the documents for the Grant Agreement and the Consortium Agreement. Additionally, templates for progress reports can be found here.
- <u>Announcements</u>: Finally, a page announces next meetings or other important target dates.

To obtain user account and password for the restricted area, please contact the WEB-masters.

MA	VOL®HI				IMT - Karlsruher Institute of Technology (K
	Introduction	Partners	Publications	Positions	Restricted
	TelCos and Meet Projec		<mark>mber Area - Confid</mark> verables Mile EC-related Do	stones Co	ntact and Communication Announcements
	Last edit: 21 October 201.	1, © - Institute of M	icrostructure Technologi	es, Karlsruher Institu	te of Technology (KIT) - all rights reserved,

Figure 2: NAVOLCHI restricted area main menu.

Due to the clear and simple design of the pages, a redundant printout of the sub-pages is omitted here. Please follow the links in the text and visit <u>www.navolchi.eu</u> for further experiences!