
FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 01/31/2012
NAVOLCHI – D5.1 Version 1

Confidential document – page 1

Nano Scale Disruptive Silicon-Plasmonic Platform for Chip-
to-Chip Interconnection

Dual Die Communication Module functional specification

 Deliverable no.: D5.1
 Due date: 04/30/2012
 Actual Submission date: 04/30/2012
 Authors: ST
 Work package(s): WP5
 Distribution level: CO1 (NAVOLCHI Consortium)
 Nature: Document, available online in the restricted area
 of the NAVOLCHI webpage

List of Partners concerned
Partner
number

Partner name Partner
short
name

Country Date
enter
project

Date
exit
project

1 Karlsruher Institut für Technologie KIT Germany M1 M36

2 INTERUNIVERSITAIR MICRO-
ELECTRONICA CENTRUM VZW IMCV Belgium M1 M36

3 TECHNISCHE UNIVERSITEIT
EINDHOVEN TU/e Netherlands M1 M36

4
RESEARCH AND EDUCATION
LABORATORY IN INFORMATION
TECHNOLOGIES

AIT Greece
M1 M36

5 UNIVERSITAT DE VALENCIA UVEG Spain M1 M36
6 STMICROELECTRONICS SRL ST Italy M1 M36
7 UNIVERSITEIT GENT UGent Belgium M1 M36

1 PU = Public

PP = Restricted to other programme participants (including the Commission Services)
 RE = Restricted to a group specified by the consortium (including the Commission Services)
 CO = Confidential, only for members of the consortium (including the Commission Services)

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 01/31/2012
NAVOLCHI – D5.1 Version 1

Confidential document – page 2

Deliverable Responsible
 Organization: STMicroelectronics
 Contact Person: Alberto Scandurra
 Address: Stradale Primosole, 50 – 95121 Catania
 Italy
 Phone: +39 095 740 4432
 Fax: +39 095 740 4008
 E-mail: alberto.scandurra@st.com

Executive Summary
This document describes the Dual Die Communication Module (DDCM) architecture and
functionality. The DDCM is an Intellectual Property (IP) allowing two dice within a System in
Package (SiP) to communicate to each other. Its functionality covers all the layers foreseen by
the protocol stack, from transport to data link, but the physical layer (PHY), that can be of
different nature, i.e. electrical or optical. This document addresses a first DDCM implementation
supporting electrical PHY; in a subsequent phase of the project the DDCM will be modified so
to support an optical PHY based on plasmonics.

Change Records

Version Date Changes Author
0.1 (draft) 2012-04-19 Start Alberto Scandurra

1 (submission) 2012-04-30 Alberto Scandurra

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 01/31/2012
NAVOLCHI – D5.1 Version 1

Confidential document – page 3

Contents

1 INTRODUCTION ..5

2 PARAMETERS ..7

Top level 7
Initiators 7
Targets 8
Virtual wires 9
Clock domains synchronization ..9
Retiming 9
FIFOs 10
Credit-based flow control ... 10

3 INTERFACES .. 12

System 12
Test 12
Configuration 12
Initiator 13

Target 14
Virtual wires 16
Programming 16
Security encoder .. 17

Physical channel .. 17

DDCM controller PHY adapter interface .. 18
Timing 18

4 REGISTERS ... 20

Registers access path .. 37

5 ARCHITECTURE .. 40

6 BUILDING-BLOCKS .. 43

Transmitter 43
Request Input Channel ... 43
Response Input Channel .. 45
Virtual Wires Input Channel .. 46

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 01/31/2012
NAVOLCHI – D5.1 Version 1

Confidential document – page 4

Credits Input Channel.. 47
Flow Control and QoS ... 47
PHY Adapter .. 48
Encryption module .. Error! Bookmark not defined.
PHY.. 52

Receiver 52
PHY.. 52
Decryption module ... Error! Bookmark not defined.
PHY Adapter ... Error! Bookmark not defined.
Router .. 52
Request Output Channel .. 54
Response Output Channel .. 56

Virtual wires Output Channel .. 57

7 RESET STRATEGY .. 58

8 POWER CONTROL .. 60

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 01/31/2012
NAVOLCHI – D5.1 Version 1

Confidential document – page 5

1 Introduction
The Dual Die Communication Module (abbreviated DDCM) is the building-block responsible
for the interconnection of different dice within a so called Network in Package (NiP), the
communication system enabling inter dice data transmission in the context of Systems in
Package (SiP) technology.
From an architectural point of view it represents the evolution of the STAC (STNoC Advanced
off-chip Communication module).
The main features of the DDCM, differing from STAC, are:

• support of Spidergon STNoC initiator and target interfaces;
• IP flit size and frequency conversion
• integrated src-remapper;
• integrated encoder/decoder for dynamic power saving;
• registers and logic for on-chip debugging and performance metrics calculation.

The differences between DDCM and STAC are summarized in the following table.

Feature DDCM STAC
Initiator/target interface STNoC VSTNoC
Initiator/target interface size Any 72 bits
Flit size conversion Yes No
Frequency conversion Yes No
Src remapper Yes No
Dynamic power saving Yes No
On-chip debugging and monitoring Yes No

Table 0.1 – Differences between DDCM and STAC

In the future the DDCM will support the following additional features:

• support of STBus initiator and target interfaces;
• support of AMBA-AXI initiator and target interfaces;
• integrated encryption/decryption module for transactions security;
• support of bidirectional communication with two neighbourhood dice.

The differences between future DDCM and STAC are summarized in the following table.

Feature DDCM STAC
Initiator/target interface STNoC, STBus, AMBA-AXI VSTNoC
External dice interfaces 2 1
Encryption/decryption module Internal External

Table 0.2 – Differences between future DDCM and STAC

According to a widely used approach, the DDCM is considered composed of two main building
blocks:

• the DDCM controller , responsible for managing incoming/outgoing STNoC traffic and IDN
segments, generating them through STNoC flits encapsulation and preparing them to be sent to
the PHY transmitter, as well as collecting them from the PHY receiver;

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 01/31/2012
NAVOLCHI – D5.1 Version 1

Confidential document – page 6

• the DDCM PHY, responsible for transmitting output phyts across the physical link and
collecting inputs phyts from the physical link.

The next two figures show the DDCM structure in terms of top level building-blocks.
Figure 1.1 shows the current structure with external security encoder/decoder, while figure 1.2
shows the future structure with the security encoder/decoder embedded within the DDCM top
level.

Figure 0-1: DDCM top level structure with external security codec

Figure 0-2: DDCM top level structure with internal security codec

.

.

.

DDCM
controller

DDCM
PHY

DDCM

Security
codec

.

.

.

DDCM
controller

DDCM
PHY

DDCM

Security
codec

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 01/31/2012
NAVOLCHI – D5.1 Version 1

Confidential document – page 7

2 Parameters
The DDCM is a parametric design that, depending on the SoC where it is used, can be configured properly in order
to meet system requirements and needs in terms of interfaces, FIFOs sizes, clock domains synchronization and
functionality.

The tables in next subsections list and describe the the DDCM parameters.

Top level

Name Description Range Default

init_port_nb Number of STNoC initiators. 0 to 16 4

targ_port_nb Number of STNoC targets. 0 to 16 4

virtual_wires_on Specifies if to support virtual wires. true/false true

src_remapper_on Specifies if to instantiate the src remapper true/false false

power_saving_on Specifies if to instantiate the codec for dynamic power saving. true/false false

Table 2.1: Top level parameters

Initiators

Name Description Range Default

init_i_ds_vn1_on Specifies if the downstream interface is
present in virtual network #1.

true/false true

init_i_ds_vn2_on Specifies if the downstream interface is
present in virtual network #2.

true/false false

init_i_ds_flit_size Downstream interface flit size. 16,18,32,36,64,72,128,144 72

init_i_ds_flit_extra_bits_size Downstream interface extra bits number. 0 to 144 0

init_i_ds_flit_id_atomic_on Specifies if the flit_id_atomic port is present
in downstream interface.

true/false false

init_i_ds_flit_id_3_on Specifies if the flid_id_3 port is present in
downstream interface.

true/false false

init_i_ds_flit_id_err_on Specifies if the flid_id_err port is present in
downstream interface.

true/false false

init_i_ds_four_be_on Specifies if the four_be port is present in
downstream interface.

true/false false

init_i_ds_four_be_size Downstream interface four_be port size. 0 to 4 0

init_i_us_vn1_on Specifies if the upstream interface is present
in virtual network #1.

true/false true

init_i_us_vn2_on Specifies if the upstream interface is present
in virtual network #2.

true/false false

init_i_us_flit_size Upstream interface flit size. 16,18,32,36,64,72,128,144 72

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 01/31/2012
NAVOLCHI – D5.1 Version 1

Confidential document – page 8

init_i_us_flit_extra_bits_size Upstream interface extra bits number. 0 to 144 0

init_i_us_flit_id_3_on Specifies if the flid_id_3 port is present in
upstream interface.

true/false false

init_i_us_flit_id_err_on Specifies if the flid_id_err port is present in
upstream interface.

true/false false

init_i_us_four_be_on Specifies if the four_be port is present in
upstream interface.

true/false false

init_i_us_four_be_size Upstream interface four_be port size. 0 to 4 0

Table 2.2: Initiators parameters

Targets

Name Description Range Default

targ_i_ds_vn1_on Specifies if the downstream interface is
present in virtual network #1.

true/false true

targ_i_ds_vn2_on Specifies if the downstream interface is
present in virtual network #2.

true/false false

targ_i_ds_flit_size Downstream interface flit size. 16,18,32,36,64,72,128,144 72

targ_i_ds_flit_extra_bits_size Downstream interface extra bits number. 0 to 144 0

targ_i_ds_flit_id_atomic_on Specifies if the flit_id_atomic port is
present in downstream interface.

true/false false

targ_i_ds_flit_id_3_on Specifies if the flid_id_3 port is present in
downstream interface.

true/false false

targ_i_ds_flit_id_err_on Specifies if the flid_id_err port is present in
downstream interface.

true/false false

targ_i_ds_four_be_on Specifies if the four_be port is present in
downstream interface.

true/false false

targ_i_ds_four_be_size Downstream interface four_be port size. 0 to 4 0

targ_i_us_vn1_on Specifies if the upstream interface is present
in virtual network #1.

true/false true

targ_i_us_vn2_on Specifies if the upstream interface is present
in virtual network #2.

true/false false

targ_i_us_flit_size Upstream interface flit size. 16,18,32,36,64,72,128,144 72

targ_i_us_flit_extra_bits_size Upstream interface extra bits number. 0 to 144 0

targ_i_us_flit_id_3_on Specifies if the flid_id_3 port is present in
upstream interface.

true/false false

targ_i_us_flit_id_err_on Specifies if the flid_id_err port is present in
upstream interface.

true/false false

targ_i_us_four_be_on Specifies if the four_be port is present in
upstream interface.

true/false false

targ_i_us_four_be_size Upstream interface four_be port size. 0 to 4 0

Table 2.3: Targets parameters

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 01/31/2012
NAVOLCHI – D5.1 Version 1

Confidential document – page 9

Virtual wires

Name Description Range Default

bundle_i_tx_size Size, in terms of number of wires, of virtual wires bundle #i in DDCM
transmitter.

0 to 80 80

bundle_i_sam_rate Sampling rate of the bundle #i of the virtual wires DDCM transmitter
port.

0 to 10 1

bundle_i_rx_size Size, in terms of number of wires, of virtual wires bundle #i in DDCM
receiver.

0 to 80 80

Table 2.4: Virtual wires parameters

Clock domains synchronization

Name Description Range Default

idn_plug_synch_dff_nb Number of synchronization flip-flops in DDCM clock domain. 1 to 8 2

prog_synch_dff_nb Number of synchronization flip-flops in programming clock domain. 1 to 8 2

phy_tx_synch_dff_nb Number of synchronization flip-flops in DDCM PHY transmitter
clock domain.

1 to 8 2

phy_rx_synch_dff_nb Number of synchronization flip-flops in DDCM PHY receiver clock
domain.

1 to 8 2

Table 2.5: Clock domains synchronization parameters

Retiming

Name Description Range Default

init_i_ds_retiming Specifies whether a retiming stage has to be istantiated at initiator #i
downstream interface.

true/false false

targ_i_ds_retiming Specifies whether a retiming stage has to be istantiated at target #i
downstream interface.

true/false false

init _i_us_retiming Specifies whether a retiming stage has to be istantiated at initiator #i
upstream interface.

true/false false

targ_i_us_retiming Specifies whether a retiming stage has to be istantiated at target #i
upstream interface.

true/false false

Table 2.6: Retiming parameters

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 01/31/2012
NAVOLCHI – D5.1 Version 1

Confidential document – page 10

FIFOs

Name Description Range Default

init_i_tx_fifo_size Size of the FIFO related to initiator port #i in DDCM transmitter. 2 to 128 8

targ_i_tx_fifo_size Size of the FIFO related to target port #i in DDCM transmitter. 2 to 128 8

init_i_rx_fifo_ size Size of IDN segment FIFO related to initiator port #i in DDCM
receiver.

8 to 128 8

targ_i_rx_fifo_ size Size of IDN segment FIFO related to target port #i in DDCM
receiver.

8 to 128 8

targ_i_rx_fifo_saf_reset Value after reset of the register specifying if store & forward
mechanism has to be applied by the different FIFOs in DDCM
receiver.

0 to 1 1

Table 2.7: FIFOs parameters

Credit-based flow control

Name Description Range Default

targ_i_rx_fifo_ threshold Number of freed locations the IDN segment FIFO
associated to target port #i of DDCM receiver must
have in order to send a credit information.

0 to 7

n : 2n locations

(0<= n <= 5)

6 : half FIFO

7 : whole FIFO

3

init_i_rx_fifo_ threshold Number of freed locations the IDN segment FIFO #i
associated to an initiator port of DDCM receiver must
have in order to send a credit information.

0 to 7

n : 2n locations

(0<= n <= 5)

6 : half FIFO

7 : whole FIFO

3

targ_i_rx_fifo_credit_period Value after reset of the frequency with which the
credits information has to be sent for target IDN
segment FIFO #i from the QoS module of the DDCM
receiver.

0 to 7

0 : 4 cycles

1 : 8 cycles

2 : 16 cycles

3 : 32 cycles

4 : 64 cycles

5 : 128 cycles

6 : 256 cycles

7 : 512 cycles

7

init_i_rx_fifo_credit_period Value after reset of the frequency with which the
credits information has to be sent for initiator IDN
segment FIFO #i from the QoS module of the DDCM
receiver.

0 to 7

0 : 4 cycles

1 : 8 cycles

7

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 01/31/2012
NAVOLCHI – D5.1 Version 1

Confidential document – page 11

2 : 16 cycles

3 : 32 cycles

4 : 64 cycles

5 : 128 cycles

6 : 256

7 : 512

Table 2.8 : Credit-based flow control parameters

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 01/31/2012
NAVOLCHI – D5.1 Version 1

Confidential document – page 12

 3 Interfaces

System
The system interface consists of the clocks on which the operation of the DDCM is based, and
the asynchronous reset used for the initialization of the block.
Notice that the reset signal is managed as an asynchronous signal, and its synchronization with
respect to the related clock is performed by proper modules inside the DDCM.

Signal name I/O Timing Description
rst_n I N/A Asynchronous active low reset
clk_plug I N/A DDCM clock
clk_prog I N/A Programming clock
clk_phy_tx I N/A DDCM PHY transmitter clock
clk_phy_rx I N/A DDCM PHY receiver clock

Table 3.1 –System interface

Test
The test interface consists of a set of ports allowing to test the DDCM digital modules (scan test)
and the physical channel and its controller (PHY) after manufacturing.
Besides the usual scan test signals, i.e. tst_scanenable, tst_scanin, tst_scanout, a tst_mode port is
required in order to bypass synchronizers and any synchronization logic during test, because of
the need of a unique reset and a unique clock.

Signal name I/O Timing Description
tst_scanenable I N/A Scan test enable
tst_scanin I N/A Scan test input
tst_scanout O N/A Scan test output
tst_mode I N/A Test mode enable
tst_phy_sce_sel I N/A PHY test source selector
tst_pg_hi<15:0> I N/A Pattern generator high data input
tst_pg_lo<15:0> I N/A Pattern generator low data input
tst_pg_vld I N/A Pattern generator data valid

Table 3.2 –Test interface

Notice that the width of scan test input and output signals will depend on the number of scan
chains created within the DDCM, according to synthesis results.

Configuration
The configuration interface consists of a set of inputs (mode pins) allowing to configure the
DDCM functionality after reset, so to be adapted to different contexts. Notice that the same
functionality can be re-programmed through the correspondent registers accessible via the
DDCM programming interface.

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 01/31/2012
NAVOLCHI – D5.1 Version 1

Confidential document – page 13

It’s important to point out that this set of configuration signals is related to the DDCM
implementation working with the electrical PHY able to operate in both DCE/SCE modes. Using
a different PHY and related PHY adapter these parameters realistically will change.
The configuration interface is synchronous with the clk_plug clock.

Signal name I/O Timing Description
phy_tx_width I Late When ‘0’ all the 16 bits of the PHY transmitter

interface are used, when ‘1’ only 8 are used
phy_rx_width I Late When ‘0’ all the 16 bits of the PHY receiver

interface are used, when ‘1’ only 8 are used
phy_mode I Late When ‘0’ the PHY works in DCE mode, when ‘1’

in SCE mode
lpe_tx_bypass I Late When ‘0’ the bus inverter transmitter for dynamic

power optimization is bypassed, when ‘1’ it’s used

Table 3.3 –Configuration interface

Initiator
The initiator interface consists of standard STNoC initiator ports, i.e. a set of signals replicated a
number of times according to how many initiators are connected to the DDCM.
If an initiator interface is synchronous with a clock differing from the DDCM main clock, the
required frequency conversion is performed inside the DDCM itself.
The following tables report the downstream and upstream interfaces for a generic STNoC
initiator, identified as initiator #i (1 <= i <= 16).

Signal name I/O Timing Description
init_i_ds_flit<init_i_ds_flit_size+init_i_ds_flit_extra_bits_size-
1:0>

I Early STNoC flit

init_i_ds_flit_id<1:0> I Early Flit
identifier

init_i_ds_flit_id_3 I Early Flit
identifier
bit 3

init_i_ds_flit_id_err<1:0> I Early Error
marker

init_i_ds_flit_id_atomic I Early Atomic
transaction
flag

init_i_ds_four_be<init_i_ds_four_be_size-1:0> I Early Four byte-
enables

init_i_ds_vn1_val I Early Virtual
network #1
valid

init_i_ds_vn1_credit O Early Virtual
network #1
credit

init_i_ds_vn2_val I Early Virtual
network #2

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 01/31/2012
NAVOLCHI – D5.1 Version 1

Confidential document – page 14

valid
init_i_ds_vn2_credit O Early Virtual

network #2
credit

Table 3.4 – STNoC initiator downstream interface

Signal name I/O Timing Description
init_i_us_flit<init_i_us_flit_size+init_i_us_flit_extra_bits_size-
1:0>

O Early STNoC flit

init_i_us_flit_id<1:0> O Early Flit identifier
init_i_us_flit_id_3 O Early Flit identifier

bit 3
init_i_us_flit_id_err<1:0> O Early Error marker
init_i_us_flit_id_atomic O Early Atomic

transaction
flag

init_i_us_four_be<init_i_us_four_be_size-1:0> O Early Four byte-
enables

init_i_us_vn1_val O Early Virtual
network #1
valid

init_i_us_vn1_credit I Early Virtual
network #1
credit

init_i_us_vn2_val O Early Virtual
network #2
valid

init_i_us_vn2_credit I Early Virtual
network #2
credit

Table 3.5 – STNoC initiator upstream interface

Target
The target interface consists of standard STNoC target ports, i.e. a set of signals replicated a
number of times according to how many targets are connected to the DDCM.
If a target interface is synchronous with a clock differing from the DDCM main clock, the
required frequency conversion is performed inside the DDCM itself.
The following tables report the downstream and upstream interfaces for a generic STNoC target,
identified as target #i (1 <= i <= 16).

Signal name I/O Timing Description
targ_i_ds_flit<targ_i_ds_flit_size+targ_i_ds_flit_extra_bits_size-
1:0>

I Early STNoC flit

targ_i_ds_flit_id<1:0> I Early Flit
identifier

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 01/31/2012
NAVOLCHI – D5.1 Version 1

Confidential document – page 15

targ_i_ds_flit_id_3 I Early Flit
identifier bit
3

targ_i_ds_flit_id_err<1:0> I Early Error
marker

targ_i_ds_flit_id_atomic I Early Atomic
transaction
flag

targ_i_ds_four_be<targ_i_ds_four_be_size-1:0> I Early Four byte-
enables

targ_i_ds_vn1_val I Early Virtual
network #1
valid

targ_i_ds_vn1_credit O Early Virtual
network #1
credit

targ_i_ds_vn2_val I Early Virtual
network #2
valid

targ_i_ds_vn2_credit O Early Virtual
network #2
credit

Table 3.6 –STNoC target downstream interface

Signal name I/O Timing Description
targ_i_us_flit<targ_i_us_flit_size+targ_i_us_flit_extra_bits_size-
1:0>

O Early STNoC flit

targ_i_us_flit_id<1:0> O Early Flit
identifier

targ_i_us_flit_id_3 O Early Flit
identifier bit
3

targ_i_us_flit_id_err<1:0> O Early Error
marker

targ_i_us_flit_id_atomic O Early Atomic
transaction
flag

targ_i_us_four_be<targ_i_us_four_be_size-1:0> O Early Four byte-
enables

targ_i_us_vn1_val O Early Virtual
network #1
valid

targ_i_us_vn1_credit I Early Virtual
network #1
credit

targ_i_us_vn2_val O Early Virtual

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 01/31/2012
NAVOLCHI – D5.1 Version 1

Confidential document – page 16

network #2
valid

targ_i_us_vn2_credit I Early Virtual
network #2
credit

Table 3.7 –STNoC target upstream interface

Virtual wires
The virtual routing interface consists of a set of bundles configurable in terms of size, whose
individual bits represent specific signals carrying specific information, such as interrupts, power
down control, asynchronous events. Such bundles are sampled at given rates, and depending on
them their content is transmitted across the DDCM to the second die.

Signal name I/O Timing Description
bundle_1_tx< bundle_1_tx_size-1:0> I N/A Virtual wires input bundle #1
bundle_2_tx< bundle_2_tx_size-1:0> I N/A Virtual wires input bundle #2
bundle_3_tx< bundle_3_tx_size-1:0> I N/A Virtual wires input bundle #3
bundle_4_tx< bundle_4_tx_size-1:0> I N/A Virtual wires input bundle #4
bundle_5_tx< bundle_5_tx_size-1:0> I N/A Virtual wires input bundle #5

Table 3.8 –DDCM transmitter virtual wires interface

Signal name I/O Timing Description
bundle_1_rx< bundle_1_rx_size-1:0> O Early Virtual wires output bundle #1
bundle_2_rx< bundle_2_rx_size-1:0> O Early Virtual wires output bundle #2
bundle_3_rx< bundle_3_rx_size-1:0> O Early Virtual wires output bundle #3
bundle_4_rx< bundle_4_rx_size-1:0> O Early Virtual wires output bundle #4
bundle_5_rx< bundle_5_rx_size-1:0> O Early Virtual wires output bundle #5

Table 3.9 –DDCM receiver virtual wires interface

Notice that virtual wires inputs are asynchronous, and they are synchronized internally to the
DDCM.

Programming
The programming interface consists of a standard STBus type 1 interface allowing to access the
internal registers in order to configure the operation of the DDCM, mainly in terms of QoS
policy. The configuration of the DDCM registers can be done either during the initialization
phase or on-fly, in the sense that the registers specifying the QoS policy can be modified even
during the normal operation of the block.
The programming interface is synchronous with the clk_prog clock.

Signal name I/O Timing Description
prog_req I Late Request
prog_eop I Late End of packet

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 01/31/2012
NAVOLCHI – D5.1 Version 1

Confidential document – page 17

prog_opc<3:0> I Late Operation code
prog_add<7:2> I Late Address
prog_data<31:0> I Late Write data
prog_be<3:0> I Late Byteenables
prog_r_req O Early Response request
prog_r_opc O Early Operation status
prog_r_data<31:0> O Early Read data

Table 3.10 – Programming interface

Security encoder
The security encoder interface consists of a set of inputs representing the masks to be used for
the encoding/decoding of the outgoing/incoming flits from/to the DDCM PHY adapter, in order
to encrypt them for protection against any hacking.

Signal name I/O Timing Description
phyt_hi_enc_tx<15:0> I N/A Transmitter phyt_hi mask
phyt_lo_enc_tx<15:0> I N/A Transmitter phyt_lo mask
phyt_hi_enc_rx<15:0> I N/A Receiver phyt_hi mask
phyt_lo_enc_rx<15:0> I N/A Receiver phyt_lo mask

Table 3.11 – Security encoder interface

Physical channel
The physical channel interface (PHY) is responsible for the actual transmission of data between
dice.
According to the layered approach followed by DDCM implementation, the PHY can change
case by case according to specific system requirements and technology availability. The PHY
interface will then change accordingly.
This section reports the interface of the PHY in case of 16 bits wide electrical physical channel
following the DCE/SCE approach. Differently PHY structure realistically will have different
interfaces.
For any detail refer to the specific PHY documentation.
When a data is ready to be transmitted a data valid signal is issued; moreover, the clock is
required to be transmitted as well, since the DDCM transmitter and receiver are physically
located in two different chips and then are clocked by different clocks, so that the
communication between them is asynchronous.
DDCM transmitter PHY is synchronous with the clk_tx clock.

Signal name I/O Timing Description
tx_phyt<15:0> O late Data to be transmitted
tx_valid O late Data valid signal
tx_clock O late Transmission clock for synchronization

Table 3.12 – Physical channel transmitter interface

DDCM receiver PHY is instead synchronous with the clk_rx clock.

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 01/31/2012
NAVOLCHI – D5.1 Version 1

Confidential document – page 18

Signal name I/O Timing Description
rx_phyt<15:0> I late Data to be transmitted
rx_valid I late Data valid signal
rx_clock I late Transmission clock for synchronization

Table 3.13 – Physical channel receiver interface

DDCM controller PHY adapter interface
Since, thanks to the layered protocol approach, the DDCM can be implemented with different
PHY structures (DCE, SCE, parallel, serial, optical, RF), it’s convenient to specify also the PHY
adapter interface, even if it is internal to the DDCM.
The interfaces described in the following tables are related to an electrical PHY working in
DCE/SCE mode. In case of different PHY, the PHY adapter interfaces with the DDCM digital
parts will not change, while the interfaces with the PHY will change according to the specific
PHY structure.

Signal name I/O Timing Description
seg<89:0> I Early DDCM segment coming from layer B
seg_val I Early DDCM segment valid flag (active high)
seg_ack O Early DDCM segment acknowledge (active high)
tx_phy_mode O Early PHY operation mode (DCE/SCE) control

flag
tx_phyt_hi<15:0> O Early Phyt to be sent during clock rising edge
tx_phyt_lo<15:0> O Early Phyt to be sent during clock falling edge
tx_phyt_valid O Early Specifies the phyt is ready to be transmitted
tx_phy_tx_clk_enable O Early PHY transmitter clock enable (active high)

Table 3.14 – PHY adapter transmitter interface

Notice that, if the phy_mode configuration input is set to ‘1’, and then the PHY works in SCE
mode, only phyt_hi output is meaningful for the PHY adapter transmitter, and only phyt_hi input
is meaningful for the PHY adapter receiver.

Signal name I/O Timing Description
rx_phyt_hi<15:0> I Early Phyt received by the PHYduring clock rising edge
rx_phyt_lo<15:0> I Early Phyt received by the PHY during clock falling edge
rx_phyt_valid I Early Specifies the phyt is ready to be kept
seg<89:0> O Early DDCM segment going to layer B
seg_val O Early DDCM segment valid flag (active high)

Table 3.15 – PHY adapter receiver interface

Timing
The timing of all the DDCM ports depends on the technology used to synthesize the design; as
example, the timing to be adopted when using the CMOS technology at 28 nm is defined as
follows:

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 01/31/2012
NAVOLCHI – D5.1 Version 1

Confidential document – page 19

• Early means within the 30% of the clock cycle; an early input refers to a signal coming from a
register located into a module very close to the DDCM; an early output refers to a signal leaving
a register of the DDCM.

• Late means within the 60% of the clock cycle; a late input refers to a signal coming from a
module placed quite far from the DDCM, so that the delay of the wire crossed by such a signal
has an impact on the arrival time to the DDCM input; a late output refers to a signal crossing
some combinational logic before leaving the DDCM.

• Mid means within the 40% of the clock cycle; a mid input refers to a signal coming from a
module placed not far from the DDCM, so that the delay of the wire crossed by such a signal has
not a big impact on the arrival time to the DDCM input; a mid output refers to a signal crossing
some small combinational logic before leaving the DDCM.

• N/A means an input is asynchronous with respect to DDCM clock period.

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 01/31/2012
NAVOLCHI – D5.1 Version 1

Confidential document – page 20

4 Registers
The DDCM is programmable in terms of some functionalities, in particular layer A (PHY adapter,
PHY) operation and routing (virtual channels), trough a set of registers. QoS management is
also planned to be configurable via registers.

DDCM registers are memory-mapped, and all of them are 32-bits wide and 32 bits-aligned.

The list of registers contained within the optional configuration module of the DDCM is shown in
next table in case of a DDCM with N virtual channels.

Address Name Description
Base+0x00 PHY_WIDTH PHY width actually used for

transmission
Base+0x04 PHY_MODE PHY transmission mode (DCE, SCE)
Base+0x08 INIT_1_8_TX_VC_ID Tx virtual channel – initiator port

association (set 1)
Base+0x0C INIT_9_16_TX_VC_ID Tx virtual channel – initiator port

association (set 2)
Base+0x10 TARG_1_8_TX_VC_ID Tx virtual channel – target port

association (set 1)
Base+0x14 TARG_9_16_TX_VC_ID Tx virtual channel – target port

association (set 2)
Base+0x18 INIT_1_8_RX_FIFO_ID Rx FIFO – initiator port association

(set 1)
Base+0x1C INIT_9_16_RX_FIFO_ID2 Rx FIFO – initiator port association

(set 2)
Base+0x20 TARG_1_8_RX_FIFO_THRESHOLD Target rx FIFOs threshold for credits

transmission (set 1)
Base+0x24 TARG_9_16_RX_FIFO_THRESHOLD Target rx FIFOs threshold for credits

transmission (set 2)
Base+0x28 INIT_1_8_RX_FIFO_THRESHOLD Initiator rx FIFOs threshold for

credits transmission (set 1)
Base+0x2C INIT_9_16_RX_FIFO_THRESHOLD Initiator rx FIFOs threshold for

credits transmission (set 2)
Base+0x30 TARG_1_8_CREDIT_TIMEOUT Target rx FIFOs credit transmission

timeout (set 1)
Base+0x34 TARG_9_16_CREDIT_TIMEOUT Target rx FIFOs credit transmission

timeout (set 2)
Base+0x38 INIT_1_8_CREDIT_TIMEOUT Initiator rx FIFOs credit transmission

timeout (set 1)
Base+0x3C INIT_9_16_CREDIT_TIMEOUT Initiator rx FIFOs credit transmission

timeout (set 2)
Base+0x40 TARG_1_8_RX_FIFO_PRI Target FIFO priorities in DDCM rx

for FC arbiter (set 1)
Base+0x44 TARG_9_16_RX_FIFO_PRI Target FIFO priorities in DDCM rx

2 Registers specifying ports to FIFOs association are not supported by DDCM v1.0

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 01/31/2012
NAVOLCHI – D5.1 Version 1

Confidential document – page 21

for FC arbiter (set 2)
Base+0x48 INIT_1_8_RX_FIFO_PRI Initiator FIFO priorities in DDCM rx

for FC arbiter (set 1)
Base+0x4C INIT_9_16_RX_FIFO_PRI Initiator FIFO priorities in DDCM rx

for FC arbiter (set 2)
Base+0x50 QOS Enables specific QoS algorithms
Base+0x54 BUNDLE_SIZE Virtual wires bundles size
Base+0x58 ADCK_EN Activity driven clock enable for each

clock domain
Base+0x5C BI_TX_BYPASS BI transmitter bypass enable
Base+0x60 TARG_RX_FIFO_SAF Target FIFO store and forward enable
Base+0x64 WIRES_SAM_RATE Virtual wires sampling rate
Base+0x68 DDCM_PHY_FREQ_RATIO Info on frequency ratio between

DDCM and DDCM PHY
Base+0x6C IPORT_1_BWL Bandwidth limiter parameters for

initiator port #1
Base+0x70 IPORT_2_BWL Bandwidth limiter parameters for

initiator port #2
.
Base+0xA4 IPORT_15_BWL Bandwidth limiter parameters for

initiator port #15
Base+0xA8 IPORT_16_BWL Bandwidth limiter parameters for

initiator port #16
Base+0xAC PHY_DEBUG_MODE PHY input selector in debug mode
Base+0xB0 INIT_1_8_TX_VC_PRI Initiator tx virtual channel priorities

(set 1)
Base+0xB4 INIT_9_16_TX_VC_PRI Initiator tx virtual channel priorities

(set 2)
Base+0xB8 TARG_1_8_TX_VC_PRI Target tx virtual channel priorities

(set 1)
Base+0xBC TARG_9_16_TX_VC_PRI Target tx virtual channel priorities

(set 2)

Table 4-1 – DDCM registers

The PHY_WIDTH, PHY_MODE, and BI_TX_BYPASS registers are set after reset through the
DDCM input ports having the same names; such ports are sampled after reset and their values
are loaded into the correspondent DDCM registers; subsequently they can be re-programmed
dynamically through the DDCM programming interface. This is shown in figure 4.1.

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 01/31/2012
NAVOLCHI – D5.1 Version 1

Confidential document – page 22

Figure 4-1 – DDCM programming logic

The following tables show in detail the structure and the meaning of each register. Notice that
“not used” means that FFs are not physically present, while “reserved” means the FFs are
present but their meaning is not defined at the moment. In both cases, write operations have no
effect while read operations return ‘0’.

Name Address Bits Description

PHY_WIDTH Base+0x00 <0> Specify the DDCM transmitter PHY interface data
(phyt) size

 0 : 16 bits

 1 : 8 bits

<1> Specify the DDCM receiver PHY interface data
(phyt) size

 0 : 16 bits

 1 : 8 bits

<31:2> Not used

Table 4-2 – PHY_WIDTH register structure

Name Address Bits Description

PHY_MODE Base+0x04 <0> Specify the PHY operation mode

 0 : Dual Clock Edge (DCE)

 1 : Single Clock Edge (SCE)

<31:1> Not used

Table 4-3 – PHY_MODE register structure

PHY_WIDTH/
PHY_MODE/

 BI_TX_BYPASS phy_width_tx/
pht_width_rx/

phy_mode/
bi_tx_bypass

1

0

prog_data(0)

FSM rst_n_stac

clk_stac

prog_req

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 01/31/2012
NAVOLCHI – D5.1 Version 1

Confidential document – page 23

Name Address Bits Description

INIT_1_8_TX_VC_ID Base+0x08 <3:0> Specify the ID of the VC connected to initiator port #1

<7:4> Specify the ID of the VC connected to initiator port #2

.

<31:28> Specify the ID of the VC connected to initiator port #8

Table 4-4–INIT_1_8_TX_VC_ID register structure

Name Address Bits Description

INIT_9_16_TX_VC_ID Base+0x0C <3:0> Specify the ID of the VC connected to initiator port #9

<7:4> Specify the ID of the VC connected to initiator port
#10

.

<31:28> Specify the ID of the VC connected to initiator port
#16

Table 4-5– INIT_9_16_TX_VC_ID register structure

Name Address Bits Description

TARG_1_8_TX_VC_ID Base+0x10 <3:0> Specify the ID of the VC connected to target port #1

<7:4> Specify the ID of the VC connected to target port #2

.

<31:28> Specify the ID of the VC connected to target port #8

Table 4-6–TARG_1_8_TX_VC_ID register structure

Name Address Bits Description

TARG_9_16_TX_VC_ID Base+0x14 <3:0> Specify the ID of the VC connected to target port #9

<7:4> Specify the ID of the VC connected to target port
#10

.

<31:28> Specify the ID of the VC connected to target port
#16

Table 4-7– TARG_9_16_TX_VC_ID register structure

Name Address Bits Description

INIT_1_8_RX_FIFO_ID Base+0x18 <3:0> Specify the ID of the FIFO connected to initiator port
#1

<7:4> Specify the ID of the FIFO connected to initiator port

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 01/31/2012
NAVOLCHI – D5.1 Version 1

Confidential document – page 24

#2

.

<31:28> Specify the ID of the FIFO connected to initiator port
#8

Table 4-8–INIT_1_8_RX_FIFO_ID register structure

Name Address Bits Description

INIT_9_16_RX_FIFO_ID Base+0x1C <3:0> Specify the ID of the FIFO connected to initiator port
#9

<7:4> Specify the ID of the FIFO connected to initiator port
#10

.

<31:28> Specify the ID of the FIFO connected to initiator port
#16

Table 4-9– INIT_9_16_RX_FIFO_ID register structure

Name Address Bits Description

TARG_1_8_RX_FIFO_THRESHOL
D

Base+0x20 <2:0> Threshold for credit information
transmission from target FIFO #1 in
DDCM receiver

 0 : 1 cell

 n : 2n cells (0 < n < 5)

 6 : half FIFO

 7 : whole FIFO

<5:3> Threshold for credit information
transmission from target FIFO #2
in DDCM receiver

<8:6> Threshold for credit information
transmission from target FIFO #3
in DDCM receiver

<11:9> Threshold for credit information
transmission from target FIFO #4
in DDCM receiver

<14:12> Threshold for credit information
transmission from target FIFO #5
in DDCM receiver

<17:15> Threshold for credit information
transmission from target FIFO #6
in DDCM receiver

<20:18> Threshold for credit information
transmission from target FIFO #7
in DDCM receiver

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 01/31/2012
NAVOLCHI – D5.1 Version 1

Confidential document – page 25

<23:21> Threshold for credit information
transmission from target FIFO #8
in DDCM receiver

<31:24> Not used

Table 4-10– TARG_1_8_RX_FIFO_THRESHOLD register structure

Name Address Bits Description

TARG_2_16_RX_FIFO_THRESHOL
D

Base+0x24 <2:0> Threshold for credit information
transmission from target FIFO #9 in
DDCM receiver

 0 : 1 cell

 n : 2n cells (0 < n < 5)

 6 : half FIFO

 7 : whole FIFO

<5:3> Threshold for credit information
transmission from target FIFO
#10 in DDCM receiver

<8:6> Threshold for credit information
transmission from target FIFO
#11 in DDCM receiver

<11:9> Threshold for credit information
transmission from target FIFO
#12 in DDCM receiver

<14:12> Threshold for credit information
transmission from target FIFO
#13 in DDCM receiver

<17:15> Threshold for credit information
transmission from target FIFO
#14 in DDCM receiver

<20:18> Threshold for credit information
transmission from target FIFO
#15 in DDCM receiver

<23:21> Threshold for credit information
transmission from target FIFO
#16 in DDCM receiver

<31:24> Not used

Table 4-11– TARG_9_16_RX_FIFO_THRESHOLD register structure

Name Address Bits Description

INIT_1_8_RX_FIFO_THRESHOLD Base+0x28 <2:0> Threshold for credit information
transmission from initiator FIFO #1 in
DDCM receiver

 0 : 1 cell

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 01/31/2012
NAVOLCHI – D5.1 Version 1

Confidential document – page 26

 n : 2n cells (0 < n < 5)

 6 : half FIFO

 7 : whole FIFO

<5:3> Threshold for credit information
transmission from initiator FIFO #2
in DDCM receiver

<8:6> Threshold for credit information
transmission from initiator FIFO #3
in DDCM receiver

<11:9> Threshold for credit information
transmission from initiator FIFO #4
in DDCM receiver

<14:12> Threshold for credit information
transmission from initiator FIFO #5
in DDCM receiver

<17:15> Threshold for credit information
transmission from initiator FIFO #6
in DDCM receiver

<20:18> Threshold for credit information
transmission from initiator FIFO #7
in DDCM receiver

<23:21> Threshold for credit information
transmission from initiator FIFO #8
in DDCM receiver

<31:24> Not used

Table 4-12– INIT_1_8_RX_FIFO_THRESHOLD register structure

Name Address Bits Description

INIT_9_16_RX_FIFO_THRESHOLD Base+0x2C <2:0> Threshold for credit information
transmission from initiator FIFO #9 in
DDCM receiver

 0 : 1 cell

 n : 2n cells (0 < n < 5)

 6 : half FIFO

 7 : whole FIFO

<5:3> Threshold for credit information
transmission from initiator FIFO
#10 in DDCM receiver

<8:6> Threshold for credit information
transmission from initiator FIFO
#11 in DDCM receiver

<11:9> Threshold for credit information
transmission from initiator FIFO
#12 in DDCM receiver

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 01/31/2012
NAVOLCHI – D5.1 Version 1

Confidential document – page 27

<14:12> Threshold for credit information
transmission from initiator FIFO
#13 in DDCM receiver

<17:15> Threshold for credit information
transmission from initiator FIFO
#14 in DDCM receiver

<20:18> Threshold for credit information
transmission from initiator FIFO
#15 in DDCM receiver

<23:21> Threshold for credit information
transmission from initiator FIFO
#16 in DDCM receiver

<31:24> Not used

Table 4-13– INIT_9_16_RX_FIFO_THRESHOLD register structure

Name Address Bits Description

TARG_1_8_CREDIT_TIMEOUT Base+0x30 <2:0> Specifies the credits timeout for target #1
FIFO

 “000” : 4 cycles

 “001” : 8 cycles

 “010” : 16 cycles

 “011” : 32 cycles

 “100” : 64 cycles

 “101” : 128 cycles

 “110“ : 256 cycles

 “111“ : 512 cycles

<5:3> Specifies the credits timeout for target #2
FIFO

<8:6> Specifies the credits timeout for target #3
FIFO

<11:9> Specifies the credits timeout for target #4
FIFO

<14:12> Specifies the credits timeout for target #5
FIFO

<17:15> Specifies the credits timeout for target #6
FIFO

<20:18> Specifies the credits timeout for target #7
FIFO

<23:21> Specifies the credits timeout for target #8
FIFO

<31:24> Not used

Table 4-14– TARG_1_8_CREDIT_TIMEOUT register structure

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 01/31/2012
NAVOLCHI – D5.1 Version 1

Confidential document – page 28

Name Address Bits Description

TARG_9_16_CREDIT_TIMEOUT Base+0x34 <2:0> Specifies the credits timeout for target #9
FIFO

 “000” : 4 cycles

 “001” : 8 cycles

 “010” : 16 cycles

 “011” : 32 cycles

 “100” : 64 cycles

 “101” : 128 cycles

 “110“ : 256 cycles

 “111“ : 512 cycles

<5:3> Specifies the credits timeout for target #10
FIFO

<8:6> Specifies the credits timeout for target #11
FIFO

<11:9> Specifies the credits timeout for target #12
FIFO

<14:12> Specifies the credits timeout for target #13
FIFO

<17:15> Specifies the credits timeout for target #14
FIFO

<20:18> Specifies the credits timeout for target #15
FIFO

<23:21> Specifies the credits timeout for target #16
FIFO

<31:24> Not used

Table 4-15– TARG_9_16_CREDIT_TIMEOUT register structure

Name Address Bits Description

INIT_1_8_CREDIT_TIMEOUT Base+0x38 <2:0> Specifies the credits timeout for initiator FIFO
#1

 “000” : 4 cycles

 “001” : 8 cycles

 “010” : 16 cycles

 “011” : 32 cycles

 “100” : 64 cycles

 “101” : 128 cycles

 “110“ : 256 cycles

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 01/31/2012
NAVOLCHI – D5.1 Version 1

Confidential document – page 29

 “111“ : 512 cycles

<5:3> Specifies the credits timeout for initiator FIFO
#2

<8:6> Specifies the credits timeout for initiator FIFO
#3

<11:9> Specifies the credits timeout for initiator FIFO
#4

<14:12> Specifies the credits timeout for initiator FIFO
#5

<17:15> Specifies the credits timeout for initiator FIFO
#6

<20:18> Specifies the credits timeout for initiator FIFO
#7

<23:21> Specifies the credits timeout for initiator FIFO
#8

<31:24> Not used

Table 4-16– INIT_1_8_CREDIT_TIMEOUT register structure

Name Address Bits Description

INIT_9_16_CREDIT_TIMEOUT Base+0x3C <2:0> Specifies the credits timeout for initiator
FIFO #9

 “000” : 4 cycles

 “001” : 8 cycles

 “010” : 16 cycles

 “011” : 32 cycles

 “100” : 64 cycles

 “101” : 128 cycles

 “110“ : 256 cycles

 “111“ : 512 cycles

<5:3> Specifies the credits timeout for initiator
FIFO #10

<8:6> Specifies the credits timeout for initiator
FIFO #11

<11:9> Specifies the credits timeout for initiator
FIFO #12

<14:12> Specifies the credits timeout for initiator
FIFO #13

<17:15> Specifies the credits timeout for initiator
FIFO #14

<20:18> Specifies the credits timeout for initiator
FIFO #15

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 01/31/2012
NAVOLCHI – D5.1 Version 1

Confidential document – page 30

<23:21> Specifies the credits timeout for initiator
FIFO #16

<31:24> Not used

Table 4-17– INIT_9_16_CREDIT_TIMEOUT register structure

Name Address Bits Description

TARG_1_8_RX_FIFO_PRI Base+0x40 <3:0> Specifies the priority of target #1 FIFO for
flow control arbiter (0 : lowest priority, 15 :
highest priority)

<7:4> Specifies the priority of target #2
FIFO for flow control arbiter

<11:8> Specifies the priority of target #3
FIFO for flow control arbiter

<15:12> Specifies the priority of target #4
FIFO for flow control arbiter

<19:16> Specifies the priority of target #5
FIFO for flow control arbiter

<23:20> Specifies the priority of target #6
FIFO for flow control arbiter

<27:24> Specifies the priority of target #7
FIFO for flow control arbiter

<31:28> Specifies the priority of target #8
FIFO for flow control arbiter

Table 4-18–TARG_1_8_ PRI register structure

Name Address Bits Description

TARG_9_16_RX_FIFO_PRI Base+0x44 <3:0> Specifies the priority of target #9 FIFO for
flow control arbiter (0 : lowest priority, 15 :
highest priority)

<7:4> Specifies the priority of target #10
FIFO for flow control arbiter

<11:8> Specifies the priority of target #11
FIFO for flow control arbiter

<15:12> Specifies the priority of target #12
FIFO for flow control arbiter

<19:16> Specifies the priority of target #13
FIFO for flow control arbiter

<23:20> Specifies the priority of target #14
FIFO for flow control arbiter

<27:24> Specifies the priority of target #15
FIFO for flow control arbiter

<31:28> Specifies the priority of target #16
FIFO for flow control arbiter

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 01/31/2012
NAVOLCHI – D5.1 Version 1

Confidential document – page 31

Table 4-19–TARG_9_16_ PRI register structure

Name Address Bits Description

INIT_1_8_RX_FIFO_PRI Base+0x48 <3:0> Specifies the priority of target #1 FIFO for
flow control arbiter (0 : lowest priority, 15 :
highest priority)

<7:4> Specifies the priority of target #2
FIFO for flow control arbiter

<11:8> Specifies the priority of target #3
FIFO for flow control arbiter

<15:12> Specifies the priority of target #4
FIFO for flow control arbiter

<19:16> Specifies the priority of target #5
FIFO for flow control arbiter

<23:20> Specifies the priority of target #6
FIFO for flow control arbiter

<27:24> Specifies the priority of target #7
FIFO for flow control arbiter

<31:28> Specifies the priority of target #8
FIFO for flow control arbiter

Table 4-20–INIT_1_8_ PRI register structure

Name Address Bits Description

INIT_9_16_RX_FIFO_PRI Base+0x4C <3:0> Specifies the priority of target #9 FIFO for
flow control arbiter (0 : lowest priority, 15 :
highest priority)

<7:4> Specifies the priority of target #10
FIFO for flow control arbiter

<11:8> Specifies the priority of target #11
FIFO for flow control arbiter

<15:12> Specifies the priority of target #12
FIFO for flow control arbiter

<19:16> Specifies the priority of target #13
FIFO for flow control arbiter

<23:20> Specifies the priority of target #14
FIFO for flow control arbiter

<27:24> Specifies the priority of target #15
FIFO for flow control arbiter

<31:28> Specifies the priority of target #16
FIFO for flow control arbiter

Table 4-21–INIT_9_16_ PRI register structure

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 01/31/2012
NAVOLCHI – D5.1 Version 1

Confidential document – page 32

Name Address Bits Description

QOS Base+0x50 <0> Specifies if LRA arbitration scheme is used

 ‘0’ => Bandwidth limiters are used

 ‘1’ => LRA scheme is used

<31:1> Reserved

Table 4-22– QOS register structure

Name Address Bits Description

BUNDLE_SIZE Base+0x54 <5:0> Size of virtual wires bundle #1

“000000” : 0 (no wires)

“000001” : 4 wires

“000010” : 5 wires

“000011” : 11 wires

“000100” : 18 wires

“000101” : 20 wires

“000110” : 25 wires

“000111” : 32 wires

“001000” : 35 wires

“001001” : 39 wires

“001010” : 46 wires

“001011” : 50 wires

“001100” : 53 wires

“001101” : 60 wires

“001110” : 65 wires

“001111” : 67 wires

“010000” : 74 wires

“010001” : 80 wires

“111111” : all the existing wires (bundle_1 size)

<11:6> Size of virtual wires bundle #2

<17:12> Size of virtual wires bundle #3

<23:18> Size of virtual wires bundle #4

<29:24> Size of virtual wires bundle #5

<31:30> Not used

Table 4-23– BUNDLE_SIZE register structure

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 01/31/2012
NAVOLCHI – D5.1 Version 1

Confidential document – page 33

Name Address Bits Description

ADCKEN Base+0x58 <5:0> Specifies how many clock cycles (1 to 63) have to
elaps in the PHY clock domain after the last phyt has
been sent by the PHY adapater before issuing the
command to deassert the PHY clock.

When 0 it means Activity Driven Clock Gating is not
enabled.

<31:6> Not used

Table 4-24– ADCKEN register structure

Name Address Bits Description

BI_TX_BYPASS Base+0x5C <0> Specifies whether the BI transmitter has to be
bypassed for debugging reasons or not

 0 : BI Tx is active

 1 : BI Tx is bypassed

<31:1> Not used

Table 4-25– BI_TX_BYPASS register structure

Name Address Bits Description

TARG_FIFO_SAF Base+0x60 <0> Enables store and forward policy for target FIFO #1

 0 : store and forward policy inactive

 1 : store and forward policy active

<1> Enables store and forward policy for target FIFO #2

<i> Enables store and forward policy for target FIFO #i (2
< i < 15)

<15> Enables store and forward policy for target FIFO #16

<31:16> Not used

Table 4-26– ADCKEN register structure

Name

Address Bits Description

WIRES_SAM_RATE Base+0x64 <5:0> Virtual wires bundle 1 sample rate

 0 : every cycle

 1 : every 2 cycles

 2 : every 4 cycles

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 01/31/2012
NAVOLCHI – D5.1 Version 1

Confidential document – page 34

 3 : every 8 cycles

 . . .

 10 : every 1024 cycles

 11 - 63 : reserved

<11:6> Virtual wires bundle 2 sample rate

<17:12> Virtual wires bundle 3 sample rate

<23:18> Virtual wires bundle 4 sample rate

<29:24> Virtual wires bundle 5 sample rate

<31:30> Not used

Table 4-27– WIRES_SAM_RATE register structure

Name Address Bits Description

DDCM_PHY_FREQ_RATIO Base+0x68 <0> Specifies the frequency ratio between DDCM
clock and PHY clock

 0 : f(DDCM) < f(PHY)

 266 MHz vs 400/450 MHz

 300 MHz vs 400/450 MHz

 333 MHz vs 400/450 MHz

 400 MHz vs 450 MHz

 1 : f(DDCM) >= f(PHY)

 450 MHz vs 400/450 MHz

 400 MHz vs 400 MHz

<31:1> Not used

Table 4-28– DDCM_PHY_FREQ_RATIO register structure

Name Address Bits Description

IPORT_1_BWL Base+0x6C <0> Enables bandwidth limiter

<4:1> Low priority (when the initiator has to be limited)

<12:5> Time window where the bandwidth has to be consumed

<16:13> Fixed value for segment counter decrease

<20:17> Thresholds (expressed in number of DDCM segments)

<28:21> Maximum segment counter value

<31:29> Not used

Table 4-29– IPORT_1_BWL register structure

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 01/31/2012
NAVOLCHI – D5.1 Version 1

Confidential document – page 35

Name Address Bits Description

IPORT_16_BWL Base+0xA8 <0> Enables bandwidth limiter

<4:1> Low priority (when the initiator has to be limited)

<12:5> Time window where the bandwidth has to be consumed

<16:13> Fixed value for segment counter decrease

<20:17> Thresholds (expressed in number of DDCM segments)

<28:21> Maximum segment counter value

<31:29> Not used

Table 4-30– IPORT_16_BWL register structure

Name Address Bits Description

PHY_DEBUG_MODE Base+0xAC <1:0> Specify the PHY data source in debug mode

 “00” : DDCM

 “01” : reserved

 “10” : pattern generator

 “11” : loopback FIFO

<31:2> Not used

Table 4-31– PHY_DEBUG_MODE register structure

Name Address Bits Description

INIT_1_8_TX_VC_PRI Base+0xB0 <3:0> Specifies the priority of initiator #1 VC for
QoS arbiter (0 : lowest priority, 15 : highest
priority)

<7:4> Specifies the priority of initiator #2
VC for QoS arbiter

<11:8> Specifies the priority of initiator #3
VC for QoS arbiter

<15:12> Specifies the priority of initiator #4
VC for QoS arbiter

<19:16> Specifies the priority of initiator #5
VC for QoS arbiter

<23:20> Specifies the priority of initiator #6
VC for QoS arbiter

<27:24> Specifies the priority of initiator #7
VC for QoS arbiter

<31:28> Specifies the priority of initiator #8
VC for QoS arbiter

Table 4-32–INIT_1_8_ TX_VC_PRI register structure

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 01/31/2012
NAVOLCHI – D5.1 Version 1

Confidential document – page 36

Name Address Bits Description

INIT_9_16_TX_VC_PRI Base+0xB4 <3:0> Specifies the priority of initiator #9 VC for
QoS arbiter (0 : lowest priority, 15 : highest
priority)

<7:4> Specifies the priority of initiator #10
VC for QoS arbiter

<11:8> Specifies the priority of initiator #11
VC for QoS arbiter

<15:12> Specifies the priority of initiator #12
VC for QoS arbiter

<19:16> Specifies the priority of initiator #13
VC for QoS arbiter

<23:20> Specifies the priority of initiator #14
VC for QoS arbiter

<27:24> Specifies the priority of initiator #15
VC for QoS arbiter

<31:28> Specifies the priority of initiator #16
VC for QoS arbiter

Table 4-33–INIT_9_16_ TX_VC_PRI register structure

Name Address Bits Description

TARG_1_8_TX_VC_PRI Base+0xB8 <3:0> Specifies the priority of target #1 VC for QoS
arbiter (0 : lowest priority, 15 : highest
priority)

<7:4> Specifies the priority of target #2 VC
for QoS arbiter

<11:8> Specifies the priority of target #3 VC
for QoS arbiter

<15:12> Specifies the priority of target #4 VC
for QoS arbiter

<19:16> Specifies the priority of target #5 VC
for QoS arbiter

<23:20> Specifies the priority of target #6 VC
for QoS arbiter

<27:24> Specifies the priority of target #7 VC
for QoS arbiter

<31:28> Specifies the priority of target #8 VC
for QoS arbiter

Table 4-34–TARG_1_8_ TX_VC_PRI register structure

Name Address Bits Description

TARG_9_16_TX_VC_PRI Base+0xBC <3:0> Specifies the priority of target #9 VC for
QoS arbiter (0 : lowest priority, 15 : highest
priority)

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 01/31/2012
NAVOLCHI – D5.1 Version 1

Confidential document – page 37

<7:4> Specifies the priority of target #10
VC for QoS arbiter

<11:8> Specifies the priority of target #11
VC for QoS arbiter

<15:12> Specifies the priority of target #12
VC for QoS arbiter

<19:16> Specifies the priority of target #13
VC for QoS arbiter

<23:20> Specifies the priority of target #14
VC for QoS arbiter

<27:24> Specifies the priority of target #15
VC for QoS arbiter

<31:28> Specifies the priority of target #16
VC for QoS arbiter

Table 4-35–TARG_9_16_ TX_VC_PRI register structure

Registers access path
This subsection highlights the path followed by programming traffic to access registers of the
different DDCM modules of a SiP.

Two different contexts can be individuated:

• the registers to be programmed are within the DDCM module in the same die where the
CPU is;

• the registers to be programmed are within the DDCM Module in the other die, where
there is no CPU.

Figure 4.2 shows the two different situations.

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 01/31/2012
NAVOLCHI – D5.1 Version 1

Confidential document – page 38

Figure 4-2: DDCM registers access paths

If registers to be programmed are in the same die of the CPU, the CPU programming traffic
crosses the local interconnect, through the type 1 peripheral subsystem, and reaches the
DDCM type 1 programming port (continuous red arrow). Such a port implements full STBus type
1 protocol, including support for byteenables and 1/2/4/8 bytes operations.

If registers to be programmed are in the other die, the CPU traffic crosses the DDCM module of
the first die, reaches the DDCM module of the second die, from which it’s routed to the local
interconnect of the second die, and after crossing the local peripheral subsystem, it reaches the
type 1 port of the DDCM module in the second die (blue arrow).

Registers in the second die could be accessed also through an internal path, i.e. CPU reaches
the programming port of the DDCM module in die #1, then if registers addresses are related to
registers of the DDCM module in die #2, this can be detected internally and registers
configuration commands can be sent directly to the DDCM module in die #2 (dashed red arrow).
This second programming option has been deeply evaluated and because of its complexity it
will not be implemented.

DDCM
Tx

DDCM
Rx

DDCM
Rx

DDCM
Tx

Die #1

Die #2

CPU

Die #1 local
interconnect

Die #2 local
interconnect

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 01/31/2012
NAVOLCHI – D5.1 Version 1

Confidential document – page 39

Notice that the programming logic will implement a mechanism allowing to program DDCM
registers in a safe way, meaning that the actual writing of a registers will be prevented if there
are transactions in progress across the DDCM, and the programming of the register can impact
the safe completion of the operations in progress. Typical registers that can lead to such an
issue are the ones containing the threshold values for the credit-based flow control.

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 01/31/2012
NAVOLCHI – D5.1 Version 1

Confidential document – page 40

5 Architecture
As shown in figure 5.1, the DDCM top level in each die consists of a transmitter (DDCM Tx)
and a receiver (DDCM Rx).
In such a figure it’s possible to see the two information flows supported by a complete DDCM
architecture, i.e.

• requests from STNoC/STBus/AMBA-AXI initiators in chip 1 to STNoC/STBus/AMBA-AXI
targets in chip 2, responses from STNoC/STBus/AMBA-AXI targets in chip 2 to
STNoC/STBus/AMBA-AXI initiators in chip 1, virtual wires from chip 1 to chip 2 (continuous
lines);

• requests from STNoC/STBus/AMBA-AXI initiators in chip 2 to STNoC/STBus/AMBA-AXI
targets in chip 1, responses from STNoC/STBus/AMBA-AXI targets in chip 1 to
STNoC/STBus/AMBA-AXI initiators in chip 2, virtual wires from chip 2 to chip 1 (dotted lines).

Figure 0-1: DDCM top level architecture and information flow

The DDCM transmitter (DDCM Tx) is responsible for

• receiving requests from STNoC/STBus/AMBA-AXI initiators in the same die and sending them
to STNoC/STBus/AMBA-AXI targets in the other die;

DDCM
Tx

DDCM
Rx

Die #1

Die #2

STNoC/STB
us/AXI
initiator

Virtua
l wires

Virtua
l wires

Request traffic flow
Response traffic flow
Virtual wires

Unidirection
al physical
links DDCM

Tx
DDCM
Rx

STNoC/STB
us/AXI
target

STNoC/STB
us/AXI
initiator

STNoC/STB
us/AXI
target

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 01/31/2012
NAVOLCHI – D5.1 Version 1

Confidential document – page 41

• receiving responses from STNoC/STBus/AMBA-AXI targets in the same die and sending them
to STNoC/STBus/AMBA-AXI initiators in the other die;

• sampling ancillary signals (virtual wires) generated in the same die at a specified rate and
sending samples to the other die.

The DDCM receiver (DDCM Rx) is responsible for
• receiving requests from STNoC/STBus/AMBA-AXI initiators in the other die and sending them

to STNoC/STBus/AMBA-AXI targets in the same die;
• receiving responses from STNoC/STBus/AMBA-AXI targets in the other die and sending them

to STNoC/STBus/AMBA-AXI initiators in the same die;
• receiving ancillary signals samples generated in the other die and sending them to the proper

destination in the same die.
Figure 5-2 shows a full architectural view of an DDCM, highlighting the separation between an
DDCM transmitter and an DDCM receiver.

Figure 0-2: DDCM detailed architecture

Figure 5-3 shows the architecture of the DDCM highlighting the connections with initiators and
targets across an STNoC interconnect. In this picture it’s possible to see clearly how request and
response traffic streams flow.

PHY adapter PHY adapter

Die n+1 Die n+1

IDN Plug transmitter IDN Plug receiverDie n

PHY RxPHY Tx

FC

FC & QoS Router

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 01/31/2012
NAVOLCHI – D5.1 Version 1

Confidential document – page 42

Figure 0-3: DDCM detailed architecture highlighting traffic streams flows

Figure 5-4 shows the connection and the traffic streams flows between two dice, highlighting the
two DDCMs architectures and their crossing. Specifically, the orange line represents the request
traffic stream flowring from initiator 1 in die #1 towards target 2 in die #2, while the yellow line
represents the response traffic stream flowing from target 2 in die #2 towards initiator 1 in die
#1.

Figure 0-4 : Traffic streams flows between two dice

Next section describes in detail all the DDCM building-blocks.

Init IC

Targ IC

FC
QoS

PHY
adapt.
Tx

PHY
Tx

Init OC

Targ OC

Router
PHY
adapt.
Rx

PHY
Rx

Init 1

Targ 1

STNoC

Transmitter

Receiver

IDN Plug

Init IC

Targ IC

FC
QoS

PHY
adapt.
Tx

PHY
Tx

Init OC

Targ OC

Router
PHY
adapt.
Rx

PHY
Rx

Init 2

Targ 2

STNoC

Transmitter

Receiver

IDN Plug

Die #1 Die #2

Init IC

Targ IC

FC
QoS

PHY
adapt.
Tx

PHY
Tx

Init OC

Targ OC
Router

PHY
adapt.
Rx

PHY
Rx

Init 1

Targ 1

STNoC

Transmitter

Receiver

IDN Plug

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 01/31/2012
NAVOLCHI – D5.1 Version 1

Confidential document – page 43

6 Building-blocks
In this section all the DDCM building-blocks are described.

Transmitter
The DDCM transmitter performs the following functions:

• Buffering of STNoC, STBus, AMBA AXI traffic;

• Sampling of virtual wires

• STNoC, STBus, AMBA AXI traffic size conversion when required

• Frequency conversion when required

• STNoC, STBus, AMBA AXI traffic and virtual wires encapsulation within IDN segments

• Credit-based flow control

• IDN segments QoS management

• IDN segments serialization

• Phyts encryption when enabled

• Phyts transmission in SCE or DCE mode

Request Input Channel

The Request Input Channel (ReqIC) deals with STNoC request traffic generated either by an STNoC upstream
interface, or by an STBus or an AMBA AXI initiator Network Interface.

It is divided in three main parts:
• Kernel, responsible for buffering the incoming STNoC request traffic and performing flit size

conversion when required;
• FIFOs (header FIFO and payload FIFO), where STNoC request information is stored and

performing frequency conversion when required;
• Shell, responsible for encapsulating the STNoC requests into IDN segments by generating a

proper IDN header.

Kernel
SSTNoC
packet

assembling

Frequency
Conversion

Error/Power
Management

Kernel
STNoC
packet

assembling

Frequency
Conversion

Error/Power
ManagementS

S
TN

o
C

In
te

rf
ac

e
S

S
T

N
o

C
In

te
rf

ac
e

STNoC
packets

E
rr

o
r

M
an

.
U

ni
t

E
rr

or
 M

an
.

U
ni

t

IDN
segments

Shell
Handshake IP

protocol

Encodes IP
protocol

Programming

Security access

Shell
Handshake IDN

protocol

Encodes IDN
protocol

Programming

0-1: Input channel generic structure

The IC kernel in turn is composed of the following building-blocks:

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 01/31/2012
NAVOLCHI – D5.1 Version 1

Confidential document – page 44

• downstream interface (DS) responsible for collecting STNoC flits and auxiliary signals from
STNoC interface;

• input FSM (IFSM) responsible for discriminating between header and payload flits and storing
them in the respective FIFOs.

The IC shell in turn is composed of the following building-blocks:

• link scheduler (LS) responsible for reading header or payload FIFO depending on incoming
traffic shape;

• upstream interface (US) responsible for propagating the proper flit and its associated signals;
• encapsulation module (Encap) responsible for generating the IDN header and encapsulating

the STNoC flits and auxiliary signals within IDN segments; here, since the network layer header
is related to the local network topology, only the STNoC transport layer header is encapsulated
and propagated across the physical channel, while the network layer header is cut.

Header FIFO

Payload FIFO

IFSM LSDS US Encap.

Kernel Shell

0-2: Input channel micro-architecture

The encapsulation module of the Request Input Channel, dealing with STNoC requests, has the
function of generating the IDN header and to add it to the STNoC flit and auxiliary signals, so to
build the IDN segment to be serialized and propagated across the physical channel.

IDN segment
generator

Encapsulationmodule

0-3: Request IC encapsulation module function

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 01/31/2012
NAVOLCHI – D5.1 Version 1

Confidential document – page 45

Table 6.1 shows the IDN header structure.

Field name Size Bits Description
IC ID 6 <5:0> Input Channel identifier
Type 2 <7:6> IDN segment type (STNoC, virtual wires, credit)
Segment ID 2 <9:8> IDN segment identifier (first, last, intermediate)

Table 6.1 – IDN header structure

The meaning of the header fields is detailed in the following.

• IC ID is the identifier of the input channel where the information to be transmitted (both STNoC
transactions and virtual wires) comes from; marking segments with the IC ID is key for allowing
segments interleaving. If the segment is related to virtual wires (type = “01”), bits <2:0> of the IC
ID field represents the number of phyts required to transport the virtual wires information (“---
000” = 1 phyt, “---001” = 2 phyts, “---010” = 3 phyts, “---011” = 4 phyts, “---100” = 5 phyts, “---
101” = 6 phyts), while bit <5> tells whether the transmitted bundle is the fifth one.

• Type allows the DDCM receiver to understand if the segment belongs to an STNoC transaction
(“00”) or to virtual wires (“01”), in which case it is forwarded to the corresponding OC, or if it
carries credit information (“10”), in which case it is sent to the associated DDCM transmitter for
computing the new credits value.

• Segment ID specifies if the segment is the first (“01”), the last (“10”) or an intermediate one
(“00”) for the transmitted transaction; this information is important for the correct reconstruction
of the transaction at destination. If the segment is related to virtual wires (type = “01”), the
segment ID field assumes the meaning of the virtual wires bundle identifier (“00” = bundle 0,
“01” = bundle 1, “10” = bundle 2, “11” = bundle 3). If the segment is related to credits
information, the segment ID field represents the number of phyts required to transport the credit
information (“00” = 1 phyt, “01” = 2 phyts, “10” = 3 phyts, “11” = 4 phyts).

Response Input Channel

The Response Input Channel (ResIC) deals with STNoC response traffic generated either by an STNoC upstream
interface, or by an STBus or an AMBA AXI target Network Interface.

It is divided in three main parts:
• Kernel, responsible for buffering the incoming STNoC response traffic and performing flit size

conversion when required;
• FIFOs (header FIFO and payload FIFO), where STNoC response information is stored and

performing frequency conversion when required;
• Shell, responsible for encapsulating the STNoC responses into IDN segments by generating a

proper IDN header.

Kernel and Shell structure of the ResIC are the same of the ReqIC.

The encapsulation module of the Response Input Channel, dealing with STNoC responses, has
the function of performing the inverse src remapping, generating the IDN header and to add it to
the STNoC flit and auxiliary signals, so to build the IDN segment to be serialized and propagated
across the physical channel.

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 01/31/2012
NAVOLCHI – D5.1 Version 1

Confidential document – page 46

IDN segment
generator

Encapsulationmodule

Inverse src
remapper

0-4: Response IC encapsulation module function

Virtual W ires Input Channel

The Virtual Wires Input Channel (VWIC) deals with asynchronous signals not following any standard protocol,
such as interrupts, power down handshake, etc.

The Virtual Wires IC interface can be up to 400 bits wide and is organized as a set of 5 bundles, each up to 80-bits
wide. However for the input port it’s possible to specify how many wires out of the existing ones are meaningful,
through a dedicated register; this possibility allows to reuse the same DDCM VWIC block in different systems,
where the number of virtual wires is different.

In order to transmit virtual wires information virtual wires bundles are sampled periodically, at a rate specified in the
related configuration register, and the sampled values are stored into the proper section of the VWIC, whose
elements are also up to 400 bits wide and are split into 5 bundles up to 80-bits wide, in order to be transmitted across
the die-to-die channel as a set of 5 segments; each bundle is marked by a proper identifier to allow the correct
reconstruction of virtual wires information at destination.

Notice that, due to their intrinsic asynchronous nature, virtual wires are properly synchronized in DDCM clock
domain by a proper number of synchronization FFs.

In order to avoid to transmit twice or more the same information, if two back-to-back virtual wires bundles samples
are equal, the second one is not transmitted again, since this means no new events to be transmitted have occurred.
According to that, when the sampling rate is chosen equal to the DDCM clock frequency, the transmission of
virtual wires information follows actually a on-event approach, i.e. as soon as at least one wire changes its state from
‘0’ to ‘1’ the port configuration is stored into the FIFO.

Figure 0-5 –Virtual Wires IC portbundle sampling

If programmed bundles sampling rates are such that more bundles have to be transmitted simultaneously, a proper
arbitration is performed in order to select the bundle that can be transmitted, the others waiting for their turn, as

Virtual Wires IC port

Virtual Wires register

DDCM clk

Cycles
counter

Sampling
rate register

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 01/31/2012
NAVOLCHI – D5.1 Version 1

Confidential document – page 47

shown in figure 7-6. Bundles priorities are simply determined by bundle index, i.e. bundle 1 has the highest priority,
bundle 5 has the lowest.

Figure 0-6 - Virtual wires bundles arbitration

The number of phyts required to transmit the virtual wires bundle information is transported in the IC ID field of the
IDN segment header; this is required because, while all the STNoC segments have a fixed size, the virtual wires
bundles segments have a different size, linked to the number of bits used in each bundle. With this approach the
same information can be transported in case of physical channels of different width.

Finally, it’s important to highlight that only level signals are supported as virtual wires, while pulses are not
supported, since they would be lost either if their period was lower than the virtual wires sampling period, or if, even
having a period greater the sampling period, the related virtual wires bundles lost the arbitration for a time long
enough to make the pulse to disappear.

Credits Input Channel

The Credits Input Channel (CIC) deals with the credit information coming from the DDCM receiver, related to the
segment FIFOs of the OCs.

Flow Control and QoS
The Flow Control and QoS modules performs arbitration between the IDN segments generated
by the different Input Channels, according to the selected QoS policy, taking into account the
numer of credits available for each IC. If an IC has no credits available, it won’t be arbitrated, so

Virtual Wires port

DDCM clk

Cycles
counter

Sampling
rate

Cycles
counter

Cycles
counter

Bundles

Encapsulation
block

. . .

.

.

.

. . .

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 01/31/2012
NAVOLCHI – D5.1 Version 1

Confidential document – page 48

that at the end the winner of the arbitration will be an IC sure to see its segment propagated to
the other die across the physical channel.

Arbitration schemes
The QoS module supports three different arbitration schemes:

• Priority-based
• Priority-based with bandwidth limitation
• LRA (Less Recently Arrived)

The required arbitration scheme can be programmed via software properly setting the dedicated
registers (see section 8).

Priority-based

The simplest arbitration scheme supported by the QoS module is based on priority, expressed
through a 4 bits value. Provided that credits have always the highest priority, followed by virtual
wires, for all the STNoC ICs it’s possible to program their priorities so to follow a specific
criterion for segment arbitration; STNoC ICs priorities are stored in dedicated DDCM registers
and are propagated to the arbiter in the QoS module. Notice that in case of equal priority values,
the winner of the arbitration will be determined according to a positional approach so as in
STBus node arbiters.
Priority-based arbitration scheme is the default one in DDCM QoS module.

Priority-based with bandwidth limitation

With this arbitration scheme the initiators are arbitrated according to their priority, but when they
consume the bandwidth programmed for them within a specific time window, their priority is
lowered, so to allow other initiators normally having lower priorities to win the arbitration.
In order to enable bandwidth limitation in DDCM QoS module, bandwidth limiters have to be
activated and configured via the proper registers.

LRA (Less Recently Arrived)

This arbitration scheme allows to take into account the time at which an initiator has issued its
request, so to be priviledged in case of arbitration with other initiators issuing their requests later.

PHY Adapter
The PHY adapter transforms DDCM segments into a format suitable for being propagated across
the physical channel; in particular this block is responsible for segment serialization for
exploiting the narrower physical channel, and channel encoding for reducing dynamic power
consumption. This second block can be bypassed by properly setting the input configuration pin
or the correspondent register; such a bypass can be useful in case of system debugging when
errors occur.
The output of the PHY adapter is the input of the PHY, responsible for actual transmission
across the physical channel.
PHY adapter output is endowed with two 16-bits ports, named phyt_hi and phyt_low,
representing two phyts (PHYsical uniTS) that can be delivered to the PHY in one clock cycle.
If the PHY works in dual clock edge (DCE) mode the PHY adapter has to deliver the PHY two
phyt of 16 bits each, one to be transmitted during the clock rising edge and the other one to be
transmitted during the clock falling edge; if the PHY works in single clock edge (SCE) mode, the
PHY adapter sends only one phyt over the phyt_hi port.

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 01/31/2012
NAVOLCHI – D5.1 Version 1

Confidential document – page 49

The PHY adapter has also to deliver the PHY the clock enable signal; this signal is active high,
i.e. when high the PHY transmitter clock is on (it must be on during the system boot), when low
PHY transmitter clock is off.
Notice that, during the PHY test phase, the input of the PHY does not come from the PHY
adapter anymore, but rather from external test sources, i.e. the pattern generator, according to the
test interface described in table 6.2.

Figure 6-7 – DDCM layer A building-blocks

Serializer
This module has the task to split 90 bits STNoC segments generated by the DDCM modules into
smaller units.

Figure 6-8 – Serializer function

Depending on the physical channel size (16 or 8 bits), the serializer will split an STNoC segment
in 6 or 13 smaller units 15-bits or 7-bits wide, and will split the credit and virtual wires segments
into the proper number of 15-bits or 7-bits wide units depending on the required number of phyts
stored in the segment header, according to the variable segment size policy.
The following table shows the number of phyts generated depending on the incoming segment in
case of 16-bits physical channel.

90 bits
segment

Serializer BI encoder

16 bits
phyt_hi

Encryption
module

Bypass option

16 bits phyt_lo

Debug
Module
IF

Operation
mode selector

phyt_hi_enc phyt_lo_enc

16 bits
phyt_hi

16 bits
phyt_lo

90 bits DDCM segment

15/8 bits phyts

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 01/31/2012
NAVOLCHI – D5.1 Version 1

Confidential document – page 50

Segment 16 bits phyts

STNoC 6

Credit (< 32) 1

Credit (> 32, < 128) 2

Credit (= 128) 1

Virtual wires (< 4) 1

Virtual wires (>=6, < 21) 2

Virtual wires (<= 21, < 36) 3

Virtual wires (<= 36, < 51) 4

Virtual wires (<= 51, < 66) 5

Virtual wires (<= 66) 6

Table 6-1 – Number of transmitted phyts in case of 16-bits physical channel

In order to compensate the delay introduced by this serialization, the serializer output should run at a
higher speed. In any case, whatever is the speed of the PHY, since the DDCM clock and the PHY clock
have to be considered asynchronous, the serializer will take care of the frequency conversion, relying on
the frequency bridge component.

Bus Inverter (BI) encoder
This module implements a source encoding technique allowing minimizing the Hamming
distance between two consecutive phyts, so to reduce as much as possible the switching activity
over the physical channel during the transmission of information from one chip to the other.

Figure 6-9 – Bus Inverter encoder

out_bus
in_bus

inv

Bus Inverter
encoder

in_bus

out_bus

inv

Inversion
module 1

0

Hamming
distance

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 01/31/2012
NAVOLCHI – D5.1 Version 1

Confidential document – page 51

The operation of the BI encoder, according to the schematic depicted in figure 7-13, is the
following:

• the phyt to be transmitted is inverted by a proper inversion module (inverted means that
every ‘0’ is replaced by a ‘1’ and every ‘1’ is replaced by a ‘0’);

• a comparator determines whether the Hamming distance between the last transmitted
phyt and the new phyt to be transmitted is greater than half phyt size;

• if yes, the inverted new phyt is transmitted; if not, the original new phyt is transmitted.

With this approach the new phyt to be transmitted will determine the minimum switching
activity over the physical link.

Previous phyt New phyt H Encoded phyt inv H Gain
000000000000000 000000000000000 0 000000000000000 0 0 -
000000000000000 111111111111111 15 000000000000000 1 0 100%
111111111111111 111100000000000 11 000011111111111 1 4 64%
000111111111111 010101010101010 7 010101010101010 0 7 -
101010101010101 010101010101010 15 101010101010101 1 0 100%
101010101010101 111111110000000 8 000000001111111 0 7 12.5%
111111100000000 000011110000000 5 000011110000000 0 5 -
000111100000000 111111001100110 8 000000110011001 1 6 25%
000001100110011 111111110000110 10 000000001111001 1 5 50%

Table 6-2 – Examples of Bus Inverter encoding

The table above shows some examples of bus encoding related to a 15 bits bus; H is the
Hamming distance between new and previous phyt, and the gain is expressed as the number of
removed switching using the encoded new phyt, with respect to the number of original switching
using the original new phyt.
Since the BI input data can have either 15 or just 7 meaningful bits, the generation of its output
will change accordingly, depending on the value of the PHY_WIDTH register (see section 8).
The following table shows the format of the encoded phyts generated by the BI encoder for the
two possible sizes.

Phyt size Bits Field

16 bits <0> inv flag

<1:15> Phyt data

8 bits <0> inv flag

<1:7> Phyt data

<8:15> Not used

Table 6-3 – BI encoder outputs for different phyt sizes

Notice that independently on the phyt size, the inv flag is located always in bit 0 of the phyt.

Debug interface
As shown in figure 6-7, the output of the PHY adapter can be driven by an external debug
module, for test reasons; according to that, the output of the BI transmitter is multiplexed with
the debug input, under the control of a proper selector. The selector is the tst_phy_sce_sel input

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 01/31/2012
NAVOLCHI – D5.1 Version 1

Confidential document – page 52

signal, and allows to choose the PHY adapter output between the BI transmitter output and the
pattern generator input.

Encryption module
Whatever is the output of the PHY adapter, it can be encrypted simply performing a XOR with
the input key coming from the external security encoder module. A key exists for each phyt
(hi/lo), and the same keys are used in the receiver for the proper decoding.

PHY

The PHY implements the DDCM transmitter physical layer, responsible for the transmission at physical level of the
phyts across the physical channel.

Receiver
The DDCM receiver performs the following functions:

• phyts acquisition in SCE or DCE mode;

• phyts decryption when required;

• IDN segments assembly (deserialization);

• IDN segments routing;

• STNoC, STBus, AMBA AXI traffic and virtual wires reconstruction from IDN segments;

• frequency conversion when required;

• STNoC, STBus, AMBA AXI traffic size conversion when required;

• generation of STNoC, STBus, AMBA AXI traffic;

• generation of virtual wires traffic.

• credit information generation

PHY

The PHY implements the DDCM receiver physical layer, responsible for the acquisition at physical level of the
phyts transmitted across the physical channel.
It transforms phyts received from the PHY into DDCM segments; in particular this block is
responsible for channel decoding for reconstructing the actual data previously encoded for
reducing dynamic power consumption, and DDCM segments assembly through deserialization.
The channel decoder does not need the bypass option as its counterpart, since if BI transmitter is
bypassed, the information will arrive always not encoded.
The input of the PHY adapter is the output of the PHY, responsible for actual transmission
across the physical channel.
PHY adapter input is endowed with two 16-bits ports, named phyt_hi and phyt_low, representing
two phyts) that can be delivered from the PHY in one clock cycle.
If the PHY works in dual clock edge (DCE) mode the PHY adapter has to take from the PHY
two phyt of 16 bits each; if the PHY works in single clock edge (SCE) mode, the PHY adapter
takes only one phyt from the phyt_hi port.
Both ports are retimed to remove timing constraints.

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 01/31/2012
NAVOLCHI – D5.1 Version 1

Confidential document – page 53

Figure 6-10 – DDCM layer A building-blocks

Decryption module
The input of the PHY adapter can be decrypted, if previously encrypted during transmission,
simply performing a XOR with the input key coming from the external security decoder module.
A key exists for each phyt (hi/lo), and the same keys ate used in the transmitter for the proper
encoding.

Bus Inverter (BI) decoder
This module implements a source decoding technique allowing recovering the original phyt after
the source encoding performed by the BI transmitter in order to minimize the Hamming distance
between two phyts transmitted back to back.
The operation of the BI decoder, according to the schematic depicted in figure 7-16, is the
following:

• the received phyt is inverted by a proper inversion module, following the same inversion
algorithm described in when dealing with the BI transmitter;

• depending on the value of the inv signal, either the incoming phyt or the inverted one is
propagated.

Figure 6-11 –Bus Inverter decoder

90 bits
segment Deserializer BI decoder Security

decoder

phyt_hi_enc phyt_lo_enc

16 bits
phyt_hi

16 bits phyt_lo

in_bus
out_bus

inv

Bus Inverter
decoder

out_bus

in_bus

inv

Inversion
module 1

0

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 01/31/2012
NAVOLCHI – D5.1 Version 1

Confidential document – page 54

The following table shows some examples of bus decoding related to a 16-bits bus.

Bus value inv Decoding
000000000000000 0 000000000000000
000000000000000 1 111111111111111
000011111111111 1 111100000000000
010101010101010 0 010101010101010
010101010101010 1 101010101010101
111111110000000 0 111111110000000
000011110000000 0 000011110000000
000000110011001 1 111111001100110
000000001111001 1 111111110000110

Table 6-4 – Examples of Bus Inverter decoding

Since the BI decoder input data can have either 16 or just 8 meaningful bits, the generation of its
output will change accordingly, and depending on the value of the PHY_WIDTH register (see
section 8).
The BI decoder input format is equal to the BI encoder output format so as described in table 6-
4.

Deserializer
This module has the task to build 90 bits segments starting from 6 15-bits wide units coming
from the channel decoder.

Figure 6-12 – Deserializer function

It’s also possible to configure the PHY adapter so that the deserializer uses 13 7-bits wide units
to build the 90 bits segment. This in the case in which only 8 bits of the physical channel are
used, for example because the transmitter or the receiver has an 8-bits wide interface.
The deserializer gets data at the frequency of the PHY and generates data at the frequency of the
DDCM controller, and it works correctly whatever is the frequency ratio between DDCM
controller and PHY.

Router

The router sends the re-generated IDN segment towards the proper Output Channel.

Request Output Channel

The Request Output Channel (ReqOC) generates STNoC request traffic either towards an STNoC dowstream
interface, or towards an STBus or an AMBA AXI target Network Interface.

90 bits DDCM segment

15 bits phyts

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 01/31/2012
NAVOLCHI – D5.1 Version 1

Confidential document – page 55

It is divided in three main parts:
• Shell, responsible for the reconstruction of the STNoC request traffic from the IDN segments

regenerated by the PHY adapter.
• FIFOs (header FIFO and payload FIFO), where the reconstructed STNoC request information is

stored and performing frequency conversion when required;
• Kernel, responsible for performing flit size conversion when required, performing the src-

remapping and generating the local routing information according to the incoming address and
the local (local to the die) network topology.

STNoC
packets

S
S

T
N

o
C

Interface
S

S
T

N
o

C
interface

IDN
segments

Kernel
SSTNoC
packet

assembling

Frequency
Conversion

Error/Power
Management

Kernel
STNoC

packet
assembling

Frequency
Conversion

Power
Management

Shell
Handshake IP

protocol

Encodes IP
protocol

Programming

Security access

Shell
Handshake IDN

protocol

Decodes IDN
protocol

Programming

0-13: Output channel generic structure

The IC shell in turn is composed of the following building-blocks:

• IDN segment FIFO (Seg FIFO) responsible for storing IDN segments after the deserialization
performed by the PHY adapter and generating the credit information to be sent to the other die;

• extraction module (Extract) responsible for removing the IDN header and re-generating the
original STNoC flits and related auxiliary signals; at this point only the STNoC transport layer
header is re-generated, while the network layer header, depending on the local network topology,
is built from scratch relying on network structure awareness and some programming information
(QoS, routing).

• input FSM (IFSM) responsible for discriminating between header and payload flits and storing
them in the respective FIFOs.

The IC kernel in turn is composed of the following building-blocks:

• output FSM (IFSM) responsible for reading header or payload FIFO depending on incoming
traffic shape;

• upstream interface (US) responsible for propagating the proper flit and its associated signals.

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 01/31/2012
NAVOLCHI – D5.1 Version 1

Confidential document – page 56

0-14: Output channel micro-architecture

The extraction module of the Request Output Channel, dealing with STNoC requests, has the
function of regenerating the STNoC flits and auxiliary signals, performing the src remapping,
generating the QoS information and generating the routing informationaccording to the topology
of the network of the local die.

IDN segment
parser

Extraction module

Src-remapper

QoS info gen.

Routing info
gen.

0-15 Request OC encapsulation module function

Response Output Channel

The Response Output Channel (ReqOC) generates STNoC response traffic either towards an STNoC dowstream
interface, or towards an STBus or an AMBA AXI initiator Network Interface.

It is divided in three main parts:
• Shell, responsible for the reconstruction of the STNoC response traffic from the IDN segments

regenerated by the PHY adapter.

Header FIFO

Payload FIFO

IFSM OFSMExtr. US

Shell Kernel

Seg FIFO

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 01/31/2012
NAVOLCHI – D5.1 Version 1

Confidential document – page 57

• FIFOs (header FIFO and payload FIFO), where the reconstructed STNoC response information
is stored and performing frequency conversion when required;

• Kernel, responsible for performing flit size conversion when required and generating the local
routing information according to the incoming src and the local (local to the die) network
topology.

The extraction module of the Response Output Channel, dealing with STNoC responses, has the
function of regenerating the STNoC flits and auxiliary signals, generating the QoS information
and generating the routing informationaccording to the topology of the network of the local die.

IDN segment
parser

Extraction module

QoS info gen.

Routing info
gen.

0-6 Response OC encapsulation module function

Virtual wires Output Channel

The Virtual Wires Output Channel (VWOC) generates asynchronous signals not following any standard protocol,
such as interrupts, power down handshake, etc.

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 01/31/2012
NAVOLCHI – D5.1 Version 1

Confidential document – page 58

7 Reset strategy
When a system is partitioned among different dice, it’s possible that the memory from which the
boot is executed is located in a die different from the one where the CPU executing the boot is
located; a strategy ensuring the die containing the memory (die #2) exits from reset before the
die containing the CPU (die #1) is then required, so to prevent requests from CPU to be lost
during the system initialization phase.

Figure 7-1: DDCM operation during system boot phase

This can be obtained in four different ways at least:

a) the reset controller takes care of reset sequence, guaranteeing that die #2 exits from
reset before die #1;

b) the reset controller resets die #2, die #2 signals die #1 it has left the reset phase, and die
#1 can proceed with its reset procedure;

c) each die informs continuously the adjacent dice with whom it can talk about its status
(available or not available), so that a DDCM transmitter won’t assume a data to be sent if

DDCM
Tx

DDCM
Rx

DDCM
Rx

DDCM
Tx

Die #1

Die #2

CP

Memory

CPU boot request flow
Memory boot response flow

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 01/31/2012
NAVOLCHI – D5.1 Version 1

Confidential document – page 59

the destination status is not available. This can be achieved for example through a
loopback strategy, exploiting a specific magic bit of virtual wires.

d) DDCM transmitters have 0 credits after reset, so they can’t transmit anything until they
receive credit information from adjacent dice.

Solution b) requires additional wires to inform the different DDCM transmitters about the status
of the different DDCM receivers.

Solution c) requires additional logic to implement the loopback strategy (i.e. a Tx in the first die
sends a virtual wires bundle and waits for the Rx in the second die to send back a copy).

Solution d) looks not practical since, having DDCM transmitter 0 credits after reset, the credit
information can’t be transmitted either.

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 01/31/2012
NAVOLCHI – D5.1 Version 1

Confidential document – page 60

8 Power control
This section describes the strategy adopted in the DDCM for reducing as much as possible the
power consumption.

Two main mechanisms are used for achieving this objective:

• Activity-driven clock gating

• Source encoding

The activity driven clock gating is a technique relying on the request-activated clock (RACK)
philosophy, aiming at controlling the PHY clock so to reduce the power consumption at pads
level.

Actually when no activity is detected at PHY adapter output for a well determined number of
clock cycles, a command is issued telling the PHY to switch-off its clock. As soon as activity
starts again to be detected, a command to resume the clock is issued to the PHY.

Figure 8-1: Activity-controlled clock gating in DDCM transmitter

Flow control and QoS module

Segmentation module

VC #1

Source #1 Source #n

VC #n

PHY adapter

.

Physical channel

PHY

clk_plug

.

clk_phy_tx

FS

ADCK_EN
register

tx_phy_tx_clk_ena
ble

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 01/31/2012
NAVOLCHI – D5.1 Version 1

Confidential document – page 61

As highlighted in figure 8.1 the activity driven clock control is performed by a block at PHY
adapter hierarchy level, according to the following operation:

• the ADCG_EN register contains the number of clock cycles in the PHY clock domain
that have to elaps with no phyts sent to PHY interface before switching-off the PHY
clock; if the value stored in this register is 0, Activity Driven Clock Gating is not enabled
and the PHY clock is always on;

• when no phyts are transmitted from PHY adapter serializer interface, a counter starts
counting;

• until there are no phyts transmitted from PHY adapter serializer interface and the
counter value is lower than the value stored in the ADCG_EN register, the counter is
incremented;

• if before reaching the value stored in the ADCG register a phyt is transmitted from PHY
adapter serializer interface, the count is interrupted;

• when the counter reaches the value stored in the ADCG register the
tx_phy_tx_clk_enable signal is set to ‘0’; this is a command to the PHY telling that the
PHY clock has to be switched–off;

• as long as no phyts are transmitted from PHY adapter serializer interface, the
tx_phy_tx_clk_enable signal is kept to ‘0’;

• as soon as a new phyt is transmitted from the PHY adapter serializer interface, the
tx_phy_tx_clk_enable signal is set again to ‘1’; this is a command to the PHY telling the
PHY clock has to be resumed.

Notice that the functionality described above is implemented in the PHY transmitter clock
domain, and the ADCG_EN register, coming from the DDCM clock domain, is properly
synchronized in order to avoid metastability issues.

Normally when a command to switch-off the clock is issued, the actual clock switch-off occurs
after some cycles of latency required to empty the PHY pipeline; when a command to resume
the clock is issued, the clock should be resumed immediately.

The source encoding is a technique implemented in the PHY adapter and aiming at minimizing
the Hamming distance between two consecutive phyts transmitted over the physical channel, in
order to minimize the switching activity.

Bus Inverter (BI) encoder

This module implements a source encoding technique allowing minimizing the Hamming
distance between two consecutive phyts, so to reduce as much as possible the switching
activity over the physical channel during the transmission of information from one chip to the
other.

