
FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 06/02/2014
NAVOLCHI – D5.4 Version 1

Confidential document – page 1

Nano Scale Disruptive Silicon-Plasmonic Platform for Chip-
to-Chip Interconnection

Generic DDCM compatible with plasmonic-based PHY

functional specification

 Deliverable no.: D5.4
 Due date: 10/31/2013
 Actual Submission date: 02/06/2014
 Authors: ST
 Work package(s): WP5
 Distribution level: CO1 (NAVOLCHI Consortium)
 Nature: Document, available online in the restricted area
 of the NAVOLCHI webpage

List of Partners concerned
Partner
number

Partner name Partner
short
name

Country Date
enter
project

Date
exit
project

1 Karlsruher Institut für Technologie KIT Germany M1 M36

2 INTERUNIVERSITAIR MICRO-
ELECTRONICA CENTRUM VZW IMCV Belgium M1 M36

3 TECHNISCHE UNIVERSITEIT
EINDHOVEN TU/e Netherlands M1 M36

4
RESEARCH AND EDUCATION
LABORATORY IN INFORMATION
TECHNOLOGIES

AIT Greece
M1 M36

5 UNIVERSITAT DE VALENCIA UVEG Spain M1 M36
6 STMICROELECTRONICS SRL ST Italy M1 M36
7 UNIVERSITEIT GENT UGent Belgium M1 M36

1 PU = Public

PP = Restricted to other programme participants (including the Commission Services)
 RE = Restricted to a group specified by the consortium (including the Commission Services)
 CO = Confidential, only for members of the consortium (including the Commission Services)

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 06/02/2014
NAVOLCHI – D5.4 Version 1

Confidential document – page 2

Deliverable Responsible
 Organization: STMicroelectronics
 Contact Person: Alberto Scandurra
 Address: Stradale Primosole, 50 – 95121 Catania
 Italy
 Phone: +39 095 740 4432
 Fax: +39 095 740 4008
 E-mail: alberto.scandurra@st.com

Executive Summary
This document describes a generic version of the Dual Die Communication Module (DDCM)
compatible with a plasmonic-based physical layer (PHY), in terms of architecture and
functionality.

Change Records

Version Date Changes Author
0.1 (draft) 2013-11-31 Start Alberto Scandurra

1 (submission) 2014-02-06 Final version Alberto Scandurra, Valentina Cernuto

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 06/02/2014
NAVOLCHI – D5.4 Version 1

Confidential document – page 3

Contents

1 INTRODUCTION ..5

2 PARAMETERS ..6

Top level 6
Initiators 6
Targets 7
Virtual wires 8
Clock domains synchronization ..8
Retiming 8
FIFOs 9
Credit-based flow control ...9

3 INTERFACES .. 11

System 11
Test 11
Configuration 11
Initiator 12

Target 13
Virtual wires 15
Programming 15
Security encoder .. 16

Physical channel .. 16

DDCM controller PHY adapter interface .. 17
Timing 17

4 REGISTERS ... 18

Registers access path .. 34

5 ARCHITECTURE .. 37

6 BUILDING-BLOCKS .. 40

Transmitter 40
Request Input Channel ... 40

Response Input Channel .. 42

Virtual Wires Input Channel .. 43

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 06/02/2014
NAVOLCHI – D5.4 Version 1

Confidential document – page 4

Credits Input Channel.. 45

Flow Control and QoS ... 45

PHY Adapter .. 46

Digital blocks ... 47

Analog blocks .. 49

PHY.. 50

Receiver 50
PHY.. 50

PHY Adapter .. 50

Analog blocks .. 51

Digital blocks ... 51

Router .. 53

Request Output Channel .. 53

Response Output Channel .. 55

Virtual wires Output Channel .. 56

7 RESET STRATEGY .. 57

8 POWER CONTROL .. 57

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 06/02/2014
NAVOLCHI – D5.4 Version 1

Confidential document – page 5

1 Introduction
The Dual Die Communication Module (abbreviated DDCM) is the building-block responsible
for the interconnection of different dice within a so called Network in Package (NiP), the
communication system enabling inter dice data transmission in the context of Systems in
Package (SiP) technology.
The DDCM described in this document supports a plasmonics-based PHY as physical layer.
From an architectural point of view it matches exactly the DDCM supporting an electrical PHY,
as described in document D5.1 (Dual Die Communication Module Functional Specification).
The PHY adapter used in the new version, required to support the plasmonics-based PHY, is the
one described in document MS5 (Digital domain to plasmonic domain interface specification
and VHDL modelling).

According to a widely used approach, the DDCM is considered composed of two main building
blocks:

• the DDCM controller , responsible for managing incoming/outgoing STNoC traffic and IDN
segments, generating them through STNoC flits encapsulation and preparing them to be sent to
the PHY transmitter, as well as collecting them from the PHY receiver;

• the DDCM PHY, responsible for transmitting output phyts across the physical link and
collecting inputs phyts from the physical link.

Figure 1.1 shows the DDCM structure in terms of top level building-blocks. This structure does
not depend on the physical layer structure and operation.

Figure 1-1: DDCM top level structure

.

.

.

DDCM
controller

DDCM
PHY

DDCM

Security
codec

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 06/02/2014
NAVOLCHI – D5.4 Version 1

Confidential document – page 6

2 Parameters
The DDCM is a parametric design that, depending on the SoC where it is used, can be
configured properly in order to meet system requirements and needs in terms of interfaces,
FIFOs sizes, clock domains synchronization and functionality.

The tables in next subsections list and describe the the DDCM parameters. Notice that these
tables do not change with respect to the DDCM with electrical PHY.

Top level

Name Description Range Default

init_port_nb Number of STNoC initiators. 0 to 16 4

targ_port_nb Number of STNoC targets. 0 to 16 4

virtual_wires_on Specifies if to support virtual wires. true/false true

src_remapper_on Specifies if to instantiate the src remapper true/false false

power_saving_on Specifies if to instantiate the codec for dynamic power saving. true/false false

Table 2.1: Top level parameters

Initiators

Name Description Range Default

init_i_ds_vn1_on Specifies if the downstream interface is
present in virtual network #1.

true/false true

init_i_ds_vn2_on Specifies if the downstream interface is
present in virtual network #2.

true/false false

init_i_ds_flit_size Downstream interface flit size. 16,18,32,36,64,72,128,144 72

init_i_ds_flit_extra_bits_size Downstream interface extra bits number. 0 to 144 0

init_i_ds_flit_id_atomic_on Specifies if the flit_id_atomic port is present
in downstream interface.

true/false false

init_i_ds_flit_id_3_on Specifies if the flid_id_3 port is present in
downstream interface.

true/false false

init_i_ds_flit_id_err_on Specifies if the flid_id_err port is present in
downstream interface.

true/false false

init_i_ds_four_be_on Specifies if the four_be port is present in
downstream interface.

true/false false

init_i_ds_four_be_size Downstream interface four_be port size. 0 to 4 0

init_i_us_vn1_on Specifies if the upstream interface is present
in virtual network #1.

true/false true

init_i_us_vn2_on Specifies if the upstream interface is present
in virtual network #2.

true/false false

init_i_us_flit_size Upstream interface flit size. 16,18,32,36,64,72,128,144 72

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 06/02/2014
NAVOLCHI – D5.4 Version 1

Confidential document – page 7

init_i_us_flit_extra_bits_size Upstream interface extra bits number. 0 to 144 0

init_i_us_flit_id_3_on Specifies if the flid_id_3 port is present in
upstream interface.

true/false false

init_i_us_flit_id_err_on Specifies if the flid_id_err port is present in
upstream interface.

true/false false

init_i_us_four_be_on Specifies if the four_be port is present in
upstream interface.

true/false false

init_i_us_four_be_size Upstream interface four_be port size. 0 to 4 0

Table 2.2: Initiators parameters

Targets

Name Description Range Default

targ_i_ds_vn1_on Specifies if the downstream interface is
present in virtual network #1.

true/false true

targ_i_ds_vn2_on Specifies if the downstream interface is
present in virtual network #2.

true/false false

targ_i_ds_flit_size Downstream interface flit size. 16,18,32,36,64,72,128,144 72

targ_i_ds_flit_extra_bits_size Downstream interface extra bits number. 0 to 144 0

targ_i_ds_flit_id_atomic_on Specifies if the flit_id_atomic port is
present in downstream interface.

true/false false

targ_i_ds_flit_id_3_on Specifies if the flid_id_3 port is present in
downstream interface.

true/false false

targ_i_ds_flit_id_err_on Specifies if the flid_id_err port is present in
downstream interface.

true/false false

targ_i_ds_four_be_on Specifies if the four_be port is present in
downstream interface.

true/false false

targ_i_ds_four_be_size Downstream interface four_be port size. 0 to 4 0

targ_i_us_vn1_on Specifies if the upstream interface is present
in virtual network #1.

true/false true

targ_i_us_vn2_on Specifies if the upstream interface is present
in virtual network #2.

true/false false

targ_i_us_flit_size Upstream interface flit size. 16,18,32,36,64,72,128,144 72

targ_i_us_flit_extra_bits_size Upstream interface extra bits number. 0 to 144 0

targ_i_us_flit_id_3_on Specifies if the flid_id_3 port is present in
upstream interface.

true/false false

targ_i_us_flit_id_err_on Specifies if the flid_id_err port is present in
upstream interface.

true/false false

targ_i_us_four_be_on Specifies if the four_be port is present in
upstream interface.

true/false false

targ_i_us_four_be_size Upstream interface four_be port size. 0 to 4 0

Table 2.3: Targets parameters

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 06/02/2014
NAVOLCHI – D5.4 Version 1

Confidential document – page 8

Virtual wires

Name Description Range Default

bundle_i_tx_size Size, in terms of number of wires, of virtual wires bundle #i in DDCM
transmitter.

0 to 80 80

bundle_i_sam_rate Sampling rate of the bundle #i of the virtual wires DDCM transmitter
port.

0 to 10 1

bundle_i_rx_size Size, in terms of number of wires, of virtual wires bundle #i in DDCM
receiver.

0 to 80 80

Table 2.4: Virtual wires parameters

Clock domains synchronization

Name Description Range Default

idn_plug_synch_dff_nb Number of synchronization flip-flops in DDCM clock domain. 1 to 8 2

prog_synch_dff_nb Number of synchronization flip-flops in programming clock domain. 1 to 8 2

phy_tx_synch_dff_nb Number of synchronization flip-flops in DDCM PHY transmitter
clock domain.

1 to 8 2

phy_rx_synch_dff_nb Number of synchronization flip-flops in DDCM PHY receiver clock
domain.

1 to 8 2

Table 2.5: Clock domains synchronization parameters

Retiming

Name Description Range Default

init_i_ds_retiming Specifies whether a retiming stage has to be istantiated at initiator #i
downstream interface.

true/false false

targ_i_ds_retiming Specifies whether a retiming stage has to be istantiated at target #i
downstream interface.

true/false false

init _i_us_retiming Specifies whether a retiming stage has to be istantiated at initiator #i
upstream interface.

true/false false

targ_i_us_retiming Specifies whether a retiming stage has to be istantiated at target #i
upstream interface.

true/false false

Table 2.6: Retiming parameters

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 06/02/2014
NAVOLCHI – D5.4 Version 1

Confidential document – page 9

FIFOs

Name Description Range Default

init_i_tx_fifo_size Size of the FIFO related to initiator port #i in DDCM transmitter. 2 to 128 8

targ_i_tx_fifo_size Size of the FIFO related to target port #i in DDCM transmitter. 2 to 128 8

init_i_rx_fifo_ size Size of IDN segment FIFO related to initiator port #i in DDCM
receiver.

8 to 128 8

targ_i_rx_fifo_ size Size of IDN segment FIFO related to target port #i in DDCM
receiver.

8 to 128 8

targ_i_rx_fifo_saf_reset Value after reset of the register specifying if store & forward
mechanism has to be applied by the different FIFOs in DDCM
receiver.

0 to 1 1

Table 2.7: FIFOs parameters

Credit-based flow control

Name Description Range Default

targ_i_rx_fifo_ threshold Number of freed locations the IDN segment FIFO
associated to target port #i of DDCM receiver must
have in order to send a credit information.

0 to 7

n : 2n locations

(0<= n <= 5)

6 : half FIFO

7 : whole FIFO

3

init_i_rx_fifo_ threshold Number of freed locations the IDN segment FIFO #i
associated to an initiator port of DDCM receiver must
have in order to send a credit information.

0 to 7

n : 2n locations

(0<= n <= 5)

6 : half FIFO

7 : whole FIFO

3

targ_i_rx_fifo_credit_period Value after reset of the frequency with which the
credits information has to be sent for target IDN
segment FIFO #i from the QoS module of the DDCM
receiver.

0 to 7

0 : 4 cycles

1 : 8 cycles

2 : 16 cycles

3 : 32 cycles

4 : 64 cycles

5 : 128 cycles

6 : 256 cycles

7 : 512 cycles

7

init_i_rx_fifo_credit_period Value after reset of the frequency with which the
credits information has to be sent for initiator IDN
segment FIFO #i from the QoS module of the DDCM
receiver.

0 to 7

0 : 4 cycles

1 : 8 cycles

7

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 06/02/2014
NAVOLCHI – D5.4 Version 1

Confidential document – page 10

2 : 16 cycles

3 : 32 cycles

4 : 64 cycles

5 : 128 cycles

6 : 256

7 : 512

Table 2.8 : Credit-based flow control parameters

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 06/02/2014
NAVOLCHI – D5.4 Version 1

Confidential document – page 11

 3 Interfaces

System
The system interface consists of the clocks on which the operation of the DDCM is based, and
the asynchronous reset used for the initialization of the block.
Notice that the reset signal is managed as an asynchronous signal, and its synchronization with
respect to the related clock is performed by proper modules inside the DDCM.

Signal name I/O Timing Description
rst_n I N/A Asynchronous active low reset
clk_plug I N/A DDCM clock
clk_prog I N/A Programming clock
clk_phy_tx I N/A DDCM PHY transmitter clock
clk_phy_rx I N/A DDCM PHY receiver clock

Table 3.1 –System interface

Test
The test interface consists of a set of ports allowing to test the DDCM digital modules (scan test)
and the physical channel and its controller (PHY) after manufacturing.
Besides the usual scan test signals, i.e. tst_scanenable, tst_scanin, tst_scanout, a tst_mode port is
required in order to bypass synchronizers and any synchronization logic during test, because of
the need of a unique reset and a unique clock.

Signal name I/O Timing Description
tst_scanenable I N/A Scan test enable
tst_scanin I N/A Scan test input
tst_scanout O N/A Scan test output
tst_mode I N/A Test mode enable
tst_phy_sce_sel I N/A PHY test source selector
tst_pg_hi<15:0> I N/A Pattern generator high data input
tst_pg_lo<15:0> I N/A Pattern generator low data input
tst_pg_vld I N/A Pattern generator data valid

Table 3.2 –Test interface

Notice that the width of scan test input and output signals will depend on the number of scan
chains created within the DDCM, according to synthesis results.

Configuration
The configuration interface consists of a set of inputs (mode pins) allowing to configure the
DDCM functionality after reset, so to be adapted to different contexts. Notice that the same
functionality can be re-programmed through the correspondent registers accessible via the
DDCM programming interface.

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 06/02/2014
NAVOLCHI – D5.4 Version 1

Confidential document – page 12

It’s important to point out that this set of configuration signals is related to the DDCM
implementation working with the electrical PHY able to operate in both DCE/SCE modes. Using
a different PHY and related PHY adapter these parameters realistically will change.
The configuration interface is synchronous with the clk_plug clock.

Signal name I/O Timing Description
phy_tx_width I Late When ‘0’ all the 16 bits of the PHY transmitter

interface are used, when ‘1’ only 8 are used
phy_rx_width I Late When ‘0’ all the 16 bits of the PHY receiver

interface are used, when ‘1’ only 8 are used
phy_mode I Late When ‘0’ the PHY works in DCE mode, when ‘1’

in SCE mode
lpe_tx_bypass I Late When ‘0’ the bus inverter transmitter for dynamic

power optimization is bypassed, when ‘1’ it’s used

Table 3.3 –Configuration interface

Initiator
The initiator interface consists of standard STNoC initiator ports, i.e. a set of signals replicated a
number of times according to how many initiators are connected to the DDCM.
If an initiator interface is synchronous with a clock differing from the DDCM main clock, the
required frequency conversion is performed inside the DDCM itself.
The following tables report the downstream and upstream interfaces for a generic STNoC
initiator, identified as initiator #i (1 <= i <= 16).

Signal name I/O Timing Description
init_i_ds_flit<init_i_ds_flit_size+init_i_ds_flit_extra_bits_size-
1:0>

I Early STNoC flit

init_i_ds_flit_id<1:0> I Early Flit
identifier

init_i_ds_flit_id_3 I Early Flit
identifier
bit 3

init_i_ds_flit_id_err<1:0> I Early Error
marker

init_i_ds_flit_id_atomic I Early Atomic
transaction
flag

init_i_ds_four_be<init_i_ds_four_be_size-1:0> I Early Four byte-
enables

init_i_ds_vn1_val I Early Virtual
network #1
valid

init_i_ds_vn1_credit O Early Virtual
network #1
credit

init_i_ds_vn2_val I Early Virtual
network #2

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 06/02/2014
NAVOLCHI – D5.4 Version 1

Confidential document – page 13

valid
init_i_ds_vn2_credit O Early Virtual

network #2
credit

Table 3.4 – STNoC initiator downstream interface

Signal name I/O Timing Description
init_i_us_flit<init_i_us_flit_size+init_i_us_flit_extra_bits_size-
1:0>

O Early STNoC flit

init_i_us_flit_id<1:0> O Early Flit identifier
init_i_us_flit_id_3 O Early Flit identifier

bit 3
init_i_us_flit_id_err<1:0> O Early Error marker
init_i_us_flit_id_atomic O Early Atomic

transaction
flag

init_i_us_four_be<init_i_us_four_be_size-1:0> O Early Four byte-
enables

init_i_us_vn1_val O Early Virtual
network #1
valid

init_i_us_vn1_credit I Early Virtual
network #1
credit

init_i_us_vn2_val O Early Virtual
network #2
valid

init_i_us_vn2_credit I Early Virtual
network #2
credit

Table 3.5 – STNoC initiator upstream interface

Target
The target interface consists of standard STNoC target ports, i.e. a set of signals replicated a
number of times according to how many targets are connected to the DDCM.
If a target interface is synchronous with a clock differing from the DDCM main clock, the
required frequency conversion is performed inside the DDCM itself.
The following tables report the downstream and upstream interfaces for a generic STNoC target,
identified as target #i (1 <= i <= 16).

Signal name I/O Timing Description
targ_i_ds_flit<targ_i_ds_flit_size+targ_i_ds_flit_extra_bits_size-
1:0>

I Early STNoC flit

targ_i_ds_flit_id<1:0> I Early Flit
identifier

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 06/02/2014
NAVOLCHI – D5.4 Version 1

Confidential document – page 14

targ_i_ds_flit_id_3 I Early Flit
identifier bit
3

targ_i_ds_flit_id_err<1:0> I Early Error
marker

targ_i_ds_flit_id_atomic I Early Atomic
transaction
flag

targ_i_ds_four_be<targ_i_ds_four_be_size-1:0> I Early Four byte-
enables

targ_i_ds_vn1_val I Early Virtual
network #1
valid

targ_i_ds_vn1_credit O Early Virtual
network #1
credit

targ_i_ds_vn2_val I Early Virtual
network #2
valid

targ_i_ds_vn2_credit O Early Virtual
network #2
credit

Table 3.6 –STNoC target downstream interface

Signal name I/O Timing Description
targ_i_us_flit<targ_i_us_flit_size+targ_i_us_flit_extra_bits_size-
1:0>

O Early STNoC flit

targ_i_us_flit_id<1:0> O Early Flit
identifier

targ_i_us_flit_id_3 O Early Flit
identifier bit
3

targ_i_us_flit_id_err<1:0> O Early Error
marker

targ_i_us_flit_id_atomic O Early Atomic
transaction
flag

targ_i_us_four_be<targ_i_us_four_be_size-1:0> O Early Four byte-
enables

targ_i_us_vn1_val O Early Virtual
network #1
valid

targ_i_us_vn1_credit I Early Virtual
network #1
credit

targ_i_us_vn2_val O Early Virtual

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 06/02/2014
NAVOLCHI – D5.4 Version 1

Confidential document – page 15

network #2
valid

targ_i_us_vn2_credit I Early Virtual
network #2
credit

Table 3.7 –STNoC target upstream interface

Virtual wires
The virtual routing interface consists of a set of bundles configurable in terms of size, whose
individual bits represent specific signals carrying specific information, such as interrupts, power
down control, asynchronous events. Such bundles are sampled at given rates, and depending on
them their content is transmitted across the DDCM to the second die.

Signal name I/O Timing Description
bundle_1_tx< bundle_1_tx_size-1:0> I N/A Virtual wires input bundle #1
bundle_2_tx< bundle_2_tx_size-1:0> I N/A Virtual wires input bundle #2
bundle_3_tx< bundle_3_tx_size-1:0> I N/A Virtual wires input bundle #3
bundle_4_tx< bundle_4_tx_size-1:0> I N/A Virtual wires input bundle #4
bundle_5_tx< bundle_5_tx_size-1:0> I N/A Virtual wires input bundle #5

Table 3.8 –DDCM transmitter virtual wires interface

Signal name I/O Timing Description
bundle_1_rx< bundle_1_rx_size-1:0> O Early Virtual wires output bundle #1
bundle_2_rx< bundle_2_rx_size-1:0> O Early Virtual wires output bundle #2
bundle_3_rx< bundle_3_rx_size-1:0> O Early Virtual wires output bundle #3
bundle_4_rx< bundle_4_rx_size-1:0> O Early Virtual wires output bundle #4
bundle_5_rx< bundle_5_rx_size-1:0> O Early Virtual wires output bundle #5

Table 3.9 –DDCM receiver virtual wires interface

Notice that virtual wires inputs are asynchronous, and they are synchronized internally to the
DDCM.

Programming
The programming interface consists of a standard STBus type 1 interface allowing to access the
internal registers in order to configure the operation of the DDCM, mainly in terms of QoS
policy. The configuration of the DDCM registers can be done either during the initialization
phase or on-fly, in the sense that the registers specifying the QoS policy can be modified even
during the normal operation of the block.
The programming interface is synchronous with the clk_prog clock.

Signal name I/O Timing Description
prog_req I Late Request
prog_eop I Late End of packet

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 06/02/2014
NAVOLCHI – D5.4 Version 1

Confidential document – page 16

prog_opc<3:0> I Late Operation code
prog_add<7:2> I Late Address
prog_data<31:0> I Late Write data
prog_be<3:0> I Late Byteenables
prog_r_req O Early Response request
prog_r_opc O Early Operation status
prog_r_data<31:0> O Early Read data

Table 3.10 – Programming interface

Security encoder
The security encoder interface consists of a set of inputs representing the masks to be used for
the encoding/decoding of the outgoing/incoming flits from/to the DDCM PHY adapter, in order
to encrypt them for protection against any hacking.

Signal name I/O Timing Description
phyt_hi_enc_tx<15:0> I N/A Transmitter phyt_hi mask
phyt_lo_enc_tx<15:0> I N/A Transmitter phyt_lo mask
phyt_hi_enc_rx<15:0> I N/A Receiver phyt_hi mask
phyt_lo_enc_rx<15:0> I N/A Receiver phyt_lo mask

Table 3.11 – Security encoder interface

Physical channel
The physical channel interface (PHY) is responsible for the actual transmission of data between
dice. According to the layered approach followed by DDCM implementation, the PHY can
change case by case according to specific system requirements and technology availability. The
PHY interface will then change accordingly.

This section reports the interface of the PHY in case of an optical plasmonics-based physical
channel exploiting 4 optical transmission lines.

DDCM transmitter PHY is synchronous with the clk_tx clock.

Signal name I/O Timing Description
tx_phyt<3:0> O late Data to be transmitted
tx_clock O late Transmission clock for synchronization

Table 3.12 – Optical (plasmonic) physical channel transmitter interface

DDCM receiver PHY is instead synchronous with the clk_rx clock.

Signal name I/O Timing Description
rx_phyt<15:0> I late Data to be transmitted
rx_valid I late Data valid signal
rx_clock I late Transmission clock for synchronization

Table 3.13 – Physical channel receiver interface

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 06/02/2014
NAVOLCHI – D5.4 Version 1

Confidential document – page 17

Notice that while in case of electrical PHY a valid signal is required to synchronize the
transmission between transmitter and receiver, in case of optical PHY the valid signal is
recovered at destination taking into account the level of the current generated by the
photodetector, being able to discriminate between noise and actual signal.

DDCM controller PHY adapter interface
Since, thanks to the layered protocol approach, the DDCM can be implemented with different
PHY structures (DCE, SCE, parallel, serial, optical, RF), it’s convenient to specify also the PHY
adapter interface, even if it is internal to the DDCM.
The interfaces described in the following tables are related to an optical plasmonics-based PHY.

Signal name I/O Timing Description
seg<89:0> I Early DDCM segment coming from layer B
seg_val I Early DDCM segment valid flag (active high)
seg_ack O Early DDCM segment acknowledge (active high)
tx_phyt<3:0> O Early Phyt to be sent by the PHY

Table 3.14 – PHY adapter transmitter interface

Signal name I/O Timing Description
rx_phyt<3:0> I Early Phyt received by the PHY
rx_phyt_valid I Early Signal triggering PHY adapter operation, depending

on optical levels detected by PHY receiver
seg<89:0> O Early DDCM segment going to layer B
seg_val O Early DDCM segment valid flag (active high)

Table 3.15 – PHY adapter receiver interface

Timing
The timing of all the DDCM ports depends on the technology used to synthesize the design; as
example, the timing to be adopted when using the CMOS technology at 28 nm is defined as
follows:

• Early means within the 30% of the clock cycle; an early input refers to a signal coming from a
register located into a module very close to the DDCM; an early output refers to a signal leaving
a register of the DDCM.

• Late means within the 60% of the clock cycle; a late input refers to a signal coming from a
module placed quite far from the DDCM, so that the delay of the wire crossed by such a signal
has an impact on the arrival time to the DDCM input; a late output refers to a signal crossing
some combinational logic before leaving the DDCM.

• Mid means within the 40% of the clock cycle; a mid input refers to a signal coming from a
module placed not far from the DDCM, so that the delay of the wire crossed by such a signal has
not a big impact on the arrival time to the DDCM input; a mid output refers to a signal crossing
some small combinational logic before leaving the DDCM.

• N/A means an input is asynchronous with respect to DDCM clock period.

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 06/02/2014
NAVOLCHI – D5.4 Version 1

Confidential document – page 18

4 Registers
The DDCM is programmable in terms of some functionalities, in particular layer A (PHY adapter,
PHY) operation and routing (virtual channels), trough a set of registers. QoS management is
also planned to be configurable via registers.

DDCM registers are memory-mapped, and all of them are 32-bits wide and 32 bits-aligned.

The list of registers contained within the optional configuration module of the DDCM is shown in
next table in case of a DDCM with N virtual channels.

Address Name Description
Base+0x00 PHY_WIDTH PHY width actually used for

transmission
Base+0x04 PHY_MODE PHY transmission mode (DCE, SCE)
Base+0x08 INIT_1_8_TX_VC_ID Tx virtual channel – initiator port

association (set 1)
Base+0x0C INIT_9_16_TX_VC_ID Tx virtual channel – initiator port

association (set 2)
Base+0x10 TARG_1_8_TX_VC_ID Tx virtual channel – target port

association (set 1)
Base+0x14 TARG_9_16_TX_VC_ID Tx virtual channel – target port

association (set 2)
Base+0x18 INIT_1_8_RX_FIFO_ID Rx FIFO – initiator port association

(set 1)
Base+0x1C INIT_9_16_RX_FIFO_ID2 Rx FIFO – initiator port association

(set 2)
Base+0x20 TARG_1_8_RX_FIFO_THRESHOLD Target rx FIFOs threshold for credits

transmission (set 1)
Base+0x24 TARG_9_16_RX_FIFO_THRESHOLD Target rx FIFOs threshold for credits

transmission (set 2)
Base+0x28 INIT_1_8_RX_FIFO_THRESHOLD Initiator rx FIFOs threshold for

credits transmission (set 1)
Base+0x2C INIT_9_16_RX_FIFO_THRESHOLD Initiator rx FIFOs threshold for

credits transmission (set 2)
Base+0x30 TARG_1_8_CREDIT_TIMEOUT Target rx FIFOs credit transmission

timeout (set 1)
Base+0x34 TARG_9_16_CREDIT_TIMEOUT Target rx FIFOs credit transmission

timeout (set 2)
Base+0x38 INIT_1_8_CREDIT_TIMEOUT Initiator rx FIFOs credit transmission

timeout (set 1)
Base+0x3C INIT_9_16_CREDIT_TIMEOUT Initiator rx FIFOs credit transmission

timeout (set 2)
Base+0x40 TARG_1_8_RX_FIFO_PRI Target FIFO priorities in DDCM rx

for FC arbiter (set 1)
Base+0x44 TARG_9_16_RX_FIFO_PRI Target FIFO priorities in DDCM rx

2 Registers specifying ports to FIFOs association will be supported by future versions of DDCM

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 06/02/2014
NAVOLCHI – D5.4 Version 1

Confidential document – page 19

for FC arbiter (set 2)
Base+0x48 INIT_1_8_RX_FIFO_PRI Initiator FIFO priorities in DDCM rx

for FC arbiter (set 1)
Base+0x4C INIT_9_16_RX_FIFO_PRI Initiator FIFO priorities in DDCM rx

for FC arbiter (set 2)
Base+0x50 QOS Enables specific QoS algorithms
Base+0x54 BUNDLE_SIZE Virtual wires bundles size
Base+0x58 ADCK_EN Activity driven clock enable for each

clock domain
Base+0x5C BI_TX_BYPASS BI transmitter bypass enable
Base+0x60 TARG_RX_FIFO_SAF Target FIFO store and forward enable
Base+0x64 WIRES_SAM_RATE Virtual wires sampling rate
Base+0x68 DDCM_PHY_FREQ_RATIO Info on frequency ratio between

DDCM and DDCM PHY
Base+0x6C IPORT_1_BWL Bandwidth limiter parameters for

initiator port #1
Base+0x70 IPORT_2_BWL Bandwidth limiter parameters for

initiator port #2
.
Base+0xA4 IPORT_15_BWL Bandwidth limiter parameters for

initiator port #15
Base+0xA8 IPORT_16_BWL Bandwidth limiter parameters for

initiator port #16
Base+0xAC PHY_DEBUG_MODE PHY input selector in debug mode
Base+0xB0 INIT_1_8_TX_VC_PRI Initiator tx virtual channel priorities

(set 1)
Base+0xB4 INIT_9_16_TX_VC_PRI Initiator tx virtual channel priorities

(set 2)
Base+0xB8 TARG_1_8_TX_VC_PRI Target tx virtual channel priorities

(set 1)
Base+0xBC TARG_9_16_TX_VC_PRI Target tx virtual channel priorities

(set 2)

Table 4-1 – DDCM registers

The PHY_WIDTH, PHY_MODE, and BI_TX_BYPASS registers are used only in case of
electrical PHY; they must be considered as reserved in DDCM with optical plasmonic PHY.

The following tables show in detail the structure and the meaning of each register. Notice that
“not used” means that FFs are not physically present, while “reserved” means the FFs are
present but their meaning is not defined at the moment. In both cases, write operations have no
effect while read operations return ‘0’.

Name Address Bits Description

PHY_WIDTH Base+0x00 <0> Specify the DDCM transmitter PHY interface data
(phyt) size

 0 : 16 bits

 1 : 8 bits

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 06/02/2014
NAVOLCHI – D5.4 Version 1

Confidential document – page 20

<1> Specify the DDCM receiver PHY interface data
(phyt) size

 0 : 16 bits

 1 : 8 bits

<31:2> Not used

Table 4-2 – PHY_WIDTH register structure

Name Address Bits Description

PHY_MODE Base+0x04 <0> Specify the PHY operation mode

 0 : Dual Clock Edge (DCE)

 1 : Single Clock Edge (SCE)

<31:1> Not used

Table 4-3 – PHY_MODE register structure

Name Address Bits Description

INIT_1_8_TX_VC_ID Base+0x08 <3:0> Specify the ID of the VC connected to initiator port #1

<7:4> Specify the ID of the VC connected to initiator port #2

.

<31:28> Specify the ID of the VC connected to initiator port #8

Table 4-4–INIT_1_8_TX_VC_ID register structure

Name Address Bits Description

INIT_9_16_TX_VC_ID Base+0x0C <3:0> Specify the ID of the VC connected to initiator port #9

<7:4> Specify the ID of the VC connected to initiator port
#10

.

<31:28> Specify the ID of the VC connected to initiator port
#16

Table 4-5– INIT_9_16_TX_VC_ID register structure

Name Address Bits Description

TARG_1_8_TX_VC_ID Base+0x10 <3:0> Specify the ID of the VC connected to target port #1

<7:4> Specify the ID of the VC connected to target port #2

.

<31:28> Specify the ID of the VC connected to target port #8

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 06/02/2014
NAVOLCHI – D5.4 Version 1

Confidential document – page 21

Table 4-6–TARG_1_8_TX_VC_ID register structure

Name Address Bits Description

TARG_9_16_TX_VC_ID Base+0x14 <3:0> Specify the ID of the VC connected to target port #9

<7:4> Specify the ID of the VC connected to target port
#10

.

<31:28> Specify the ID of the VC connected to target port
#16

Table 4-7– TARG_9_16_TX_VC_ID register structure

Name Address Bits Description

INIT_1_8_RX_FIFO_ID Base+0x18 <3:0> Specify the ID of the FIFO connected to initiator port
#1

<7:4> Specify the ID of the FIFO connected to initiator port
#2

.

<31:28> Specify the ID of the FIFO connected to initiator port
#8

Table 4-8–INIT_1_8_RX_FIFO_ID register structure

Name Address Bits Description

INIT_9_16_RX_FIFO_ID Base+0x1C <3:0> Specify the ID of the FIFO connected to initiator port
#9

<7:4> Specify the ID of the FIFO connected to initiator port
#10

.

<31:28> Specify the ID of the FIFO connected to initiator port
#16

Table 4-9– INIT_9_16_RX_FIFO_ID register structure

Name Address Bits Description

TARG_1_8_RX_FIFO_THRESHOL
D

Base+0x20 <2:0> Threshold for credit information
transmission from target FIFO #1 in
DDCM receiver

 0 : 1 cell

 n : 2n cells (0 < n < 5)

 6 : half FIFO

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 06/02/2014
NAVOLCHI – D5.4 Version 1

Confidential document – page 22

 7 : whole FIFO

<5:3> Threshold for credit information
transmission from target FIFO #2
in DDCM receiver

<8:6> Threshold for credit information
transmission from target FIFO #3
in DDCM receiver

<11:9> Threshold for credit information
transmission from target FIFO #4
in DDCM receiver

<14:12> Threshold for credit information
transmission from target FIFO #5
in DDCM receiver

<17:15> Threshold for credit information
transmission from target FIFO #6
in DDCM receiver

<20:18> Threshold for credit information
transmission from target FIFO #7
in DDCM receiver

<23:21> Threshold for credit information
transmission from target FIFO #8
in DDCM receiver

<31:24> Not used

Table 4-10– TARG_1_8_RX_FIFO_THRESHOLD register structure

Name Address Bits Description

TARG_2_16_RX_FIFO_THRESHOL
D

Base+0x24 <2:0> Threshold for credit information
transmission from target FIFO #9 in
DDCM receiver

 0 : 1 cell

 n : 2n cells (0 < n < 5)

 6 : half FIFO

 7 : whole FIFO

<5:3> Threshold for credit information
transmission from target FIFO
#10 in DDCM receiver

<8:6> Threshold for credit information
transmission from target FIFO
#11 in DDCM receiver

<11:9> Threshold for credit information
transmission from target FIFO
#12 in DDCM receiver

<14:12> Threshold for credit information
transmission from target FIFO
#13 in DDCM receiver

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 06/02/2014
NAVOLCHI – D5.4 Version 1

Confidential document – page 23

<17:15> Threshold for credit information
transmission from target FIFO
#14 in DDCM receiver

<20:18> Threshold for credit information
transmission from target FIFO
#15 in DDCM receiver

<23:21> Threshold for credit information
transmission from target FIFO
#16 in DDCM receiver

<31:24> Not used

Table 4-11– TARG_9_16_RX_FIFO_THRESHOLD register structure

Name Address Bits Description

INIT_1_8_RX_FIFO_THRESHOLD Base+0x28 <2:0> Threshold for credit information
transmission from initiator FIFO #1 in
DDCM receiver

 0 : 1 cell

 n : 2n cells (0 < n < 5)

 6 : half FIFO

 7 : whole FIFO

<5:3> Threshold for credit information
transmission from initiator FIFO #2
in DDCM receiver

<8:6> Threshold for credit information
transmission from initiator FIFO #3
in DDCM receiver

<11:9> Threshold for credit information
transmission from initiator FIFO #4
in DDCM receiver

<14:12> Threshold for credit information
transmission from initiator FIFO #5
in DDCM receiver

<17:15> Threshold for credit information
transmission from initiator FIFO #6
in DDCM receiver

<20:18> Threshold for credit information
transmission from initiator FIFO #7
in DDCM receiver

<23:21> Threshold for credit information
transmission from initiator FIFO #8
in DDCM receiver

<31:24> Not used

Table 4-12– INIT_1_8_RX_FIFO_THRESHOLD register structure

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 06/02/2014
NAVOLCHI – D5.4 Version 1

Confidential document – page 24

Name Address Bits Description

INIT_9_16_RX_FIFO_THRESHOLD Base+0x2C <2:0> Threshold for credit information
transmission from initiator FIFO #9 in
DDCM receiver

 0 : 1 cell

 n : 2n cells (0 < n < 5)

 6 : half FIFO

 7 : whole FIFO

<5:3> Threshold for credit information
transmission from initiator FIFO
#10 in DDCM receiver

<8:6> Threshold for credit information
transmission from initiator FIFO
#11 in DDCM receiver

<11:9> Threshold for credit information
transmission from initiator FIFO
#12 in DDCM receiver

<14:12> Threshold for credit information
transmission from initiator FIFO
#13 in DDCM receiver

<17:15> Threshold for credit information
transmission from initiator FIFO
#14 in DDCM receiver

<20:18> Threshold for credit information
transmission from initiator FIFO
#15 in DDCM receiver

<23:21> Threshold for credit information
transmission from initiator FIFO
#16 in DDCM receiver

<31:24> Not used

Table 4-13– INIT_9_16_RX_FIFO_THRESHOLD register structure

Name Address Bits Description

TARG_1_8_CREDIT_TIMEOUT Base+0x30 <2:0> Specifies the credits timeout for target #1
FIFO

 “000” : 4 cycles

 “001” : 8 cycles

 “010” : 16 cycles

 “011” : 32 cycles

 “100” : 64 cycles

 “101” : 128 cycles

 “110“ : 256 cycles

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 06/02/2014
NAVOLCHI – D5.4 Version 1

Confidential document – page 25

 “111“ : 512 cycles

<5:3> Specifies the credits timeout for target #2
FIFO

<8:6> Specifies the credits timeout for target #3
FIFO

<11:9> Specifies the credits timeout for target #4
FIFO

<14:12> Specifies the credits timeout for target #5
FIFO

<17:15> Specifies the credits timeout for target #6
FIFO

<20:18> Specifies the credits timeout for target #7
FIFO

<23:21> Specifies the credits timeout for target #8
FIFO

<31:24> Not used

Table 4-14– TARG_1_8_CREDIT_TIMEOUT register structure

Name Address Bits Description

TARG_9_16_CREDIT_TIMEOUT Base+0x34 <2:0> Specifies the credits timeout for target #9
FIFO

 “000” : 4 cycles

 “001” : 8 cycles

 “010” : 16 cycles

 “011” : 32 cycles

 “100” : 64 cycles

 “101” : 128 cycles

 “110“ : 256 cycles

 “111“ : 512 cycles

<5:3> Specifies the credits timeout for target #10
FIFO

<8:6> Specifies the credits timeout for target #11
FIFO

<11:9> Specifies the credits timeout for target #12
FIFO

<14:12> Specifies the credits timeout for target #13
FIFO

<17:15> Specifies the credits timeout for target #14
FIFO

<20:18> Specifies the credits timeout for target #15
FIFO

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 06/02/2014
NAVOLCHI – D5.4 Version 1

Confidential document – page 26

<23:21> Specifies the credits timeout for target #16
FIFO

<31:24> Not used

Table 4-15– TARG_9_16_CREDIT_TIMEOUT register structure

Name Address Bits Description

INIT_1_8_CREDIT_TIMEOUT Base+0x38 <2:0> Specifies the credits timeout for initiator FIFO
#1

 “000” : 4 cycles

 “001” : 8 cycles

 “010” : 16 cycles

 “011” : 32 cycles

 “100” : 64 cycles

 “101” : 128 cycles

 “110“ : 256 cycles

 “111“ : 512 cycles

<5:3> Specifies the credits timeout for initiator FIFO
#2

<8:6> Specifies the credits timeout for initiator FIFO
#3

<11:9> Specifies the credits timeout for initiator FIFO
#4

<14:12> Specifies the credits timeout for initiator FIFO
#5

<17:15> Specifies the credits timeout for initiator FIFO
#6

<20:18> Specifies the credits timeout for initiator FIFO
#7

<23:21> Specifies the credits timeout for initiator FIFO
#8

<31:24> Not used

Table 4-16– INIT_1_8_CREDIT_TIMEOUT register structure

Name Address Bits Description

INIT_9_16_CREDIT_TIMEOUT Base+0x3C <2:0> Specifies the credits timeout for initiator
FIFO #9

 “000” : 4 cycles

 “001” : 8 cycles

 “010” : 16 cycles

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 06/02/2014
NAVOLCHI – D5.4 Version 1

Confidential document – page 27

 “011” : 32 cycles

 “100” : 64 cycles

 “101” : 128 cycles

 “110“ : 256 cycles

 “111“ : 512 cycles

<5:3> Specifies the credits timeout for initiator
FIFO #10

<8:6> Specifies the credits timeout for initiator
FIFO #11

<11:9> Specifies the credits timeout for initiator
FIFO #12

<14:12> Specifies the credits timeout for initiator
FIFO #13

<17:15> Specifies the credits timeout for initiator
FIFO #14

<20:18> Specifies the credits timeout for initiator
FIFO #15

<23:21> Specifies the credits timeout for initiator
FIFO #16

<31:24> Not used

Table 4-17– INIT_9_16_CREDIT_TIMEOUT register structure

Name Address Bits Description

TARG_1_8_RX_FIFO_PRI Base+0x40 <3:0> Specifies the priority of target #1 FIFO for
flow control arbiter (0 : lowest priority, 15 :
highest priority)

<7:4> Specifies the priority of target #2
FIFO for flow control arbiter

<11:8> Specifies the priority of target #3
FIFO for flow control arbiter

<15:12> Specifies the priority of target #4
FIFO for flow control arbiter

<19:16> Specifies the priority of target #5
FIFO for flow control arbiter

<23:20> Specifies the priority of target #6
FIFO for flow control arbiter

<27:24> Specifies the priority of target #7
FIFO for flow control arbiter

<31:28> Specifies the priority of target #8
FIFO for flow control arbiter

Table 4-18–TARG_1_8_ PRI register structure

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 06/02/2014
NAVOLCHI – D5.4 Version 1

Confidential document – page 28

Name Address Bits Description

TARG_9_16_RX_FIFO_PRI Base+0x44 <3:0> Specifies the priority of target #9 FIFO for
flow control arbiter (0 : lowest priority, 15 :
highest priority)

<7:4> Specifies the priority of target #10
FIFO for flow control arbiter

<11:8> Specifies the priority of target #11
FIFO for flow control arbiter

<15:12> Specifies the priority of target #12
FIFO for flow control arbiter

<19:16> Specifies the priority of target #13
FIFO for flow control arbiter

<23:20> Specifies the priority of target #14
FIFO for flow control arbiter

<27:24> Specifies the priority of target #15
FIFO for flow control arbiter

<31:28> Specifies the priority of target #16
FIFO for flow control arbiter

Table 4-19–TARG_9_16_ PRI register structure

Name Address Bits Description

INIT_1_8_RX_FIFO_PRI Base+0x48 <3:0> Specifies the priority of target #1 FIFO for
flow control arbiter (0 : lowest priority, 15 :
highest priority)

<7:4> Specifies the priority of target #2
FIFO for flow control arbiter

<11:8> Specifies the priority of target #3
FIFO for flow control arbiter

<15:12> Specifies the priority of target #4
FIFO for flow control arbiter

<19:16> Specifies the priority of target #5
FIFO for flow control arbiter

<23:20> Specifies the priority of target #6
FIFO for flow control arbiter

<27:24> Specifies the priority of target #7
FIFO for flow control arbiter

<31:28> Specifies the priority of target #8
FIFO for flow control arbiter

Table 4-20–INIT_1_8_ PRI register structure

Name Address Bits Description

INIT_9_16_RX_FIFO_PRI Base+0x4C <3:0> Specifies the priority of target #9 FIFO for
flow control arbiter (0 : lowest priority, 15 :
highest priority)

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 06/02/2014
NAVOLCHI – D5.4 Version 1

Confidential document – page 29

<7:4> Specifies the priority of target #10
FIFO for flow control arbiter

<11:8> Specifies the priority of target #11
FIFO for flow control arbiter

<15:12> Specifies the priority of target #12
FIFO for flow control arbiter

<19:16> Specifies the priority of target #13
FIFO for flow control arbiter

<23:20> Specifies the priority of target #14
FIFO for flow control arbiter

<27:24> Specifies the priority of target #15
FIFO for flow control arbiter

<31:28> Specifies the priority of target #16
FIFO for flow control arbiter

Table 4-21–INIT_9_16_ PRI register structure

Name Address Bits Description

QOS Base+0x50 <0> Specifies if LRA arbitration scheme is used

 ‘0’ => Bandwidth limiters are used

 ‘1’ => LRA scheme is used

<31:1> Reserved

Table 4-22– QOS register structure

Name Address Bits Description

BUNDLE_SIZE Base+0x54 <5:0> Size of virtual wires bundle #1

“000000” : 0 (no wires)

“000001” : 4 wires

“000010” : 5 wires

“000011” : 11 wires

“000100” : 18 wires

“000101” : 20 wires

“000110” : 25 wires

“000111” : 32 wires

“001000” : 35 wires

“001001” : 39 wires

“001010” : 46 wires

“001011” : 50 wires

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 06/02/2014
NAVOLCHI – D5.4 Version 1

Confidential document – page 30

“001100” : 53 wires

“001101” : 60 wires

“001110” : 65 wires

“001111” : 67 wires

“010000” : 74 wires

“010001” : 80 wires

“111111” : all the existing wires (bundle_1 size)

<11:6> Size of virtual wires bundle #2

<17:12> Size of virtual wires bundle #3

<23:18> Size of virtual wires bundle #4

<29:24> Size of virtual wires bundle #5

<31:30> Not used

Table 4-23– BUNDLE_SIZE register structure

Name Address Bits Description

ADCKEN Base+0x58 <5:0> Specifies how many clock cycles (1 to 63) have to
elaps in the PHY clock domain after the last phyt has
been sent by the PHY adapater before issuing the
command to deassert the PHY clock.

When 0 it means Activity Driven Clock Gating is not
enabled.

<31:6> Not used

Table 4-24– ADCKEN register structure

Name Address Bits Description

BI_TX_BYPASS Base+0x5C <0> Specifies whether the BI transmitter has to be
bypassed for debugging reasons or not

 0 : BI Tx is active

 1 : BI Tx is bypassed

<31:1> Not used

Table 4-25– BI_TX_BYPASS register structure

Name Address Bits Description

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 06/02/2014
NAVOLCHI – D5.4 Version 1

Confidential document – page 31

TARG_FIFO_SAF Base+0x60 <0> Enables store and forward policy for target FIFO #1

 0 : store and forward policy inactive

 1 : store and forward policy active

<1> Enables store and forward policy for target FIFO #2

<i> Enables store and forward policy for target FIFO #i (2
< i < 15)

<15> Enables store and forward policy for target FIFO #16

<31:16> Not used

Table 4-26– ADCKEN register structure

Name

Address Bits Description

WIRES_SAM_RATE Base+0x64 <5:0> Virtual wires bundle 1 sample rate

 0 : every cycle

 1 : every 2 cycles

 2 : every 4 cycles

 3 : every 8 cycles

 . . .

 10 : every 1024 cycles

 11 - 63 : reserved

<11:6> Virtual wires bundle 2 sample rate

<17:12> Virtual wires bundle 3 sample rate

<23:18> Virtual wires bundle 4 sample rate

<29:24> Virtual wires bundle 5 sample rate

<31:30> Not used

Table 4-27– WIRES_SAM_RATE register structure

Name Address Bits Description

DDCM_PHY_FREQ_RATIO Base+0x68 <0> Specifies the frequency ratio between DDCM
clock and PHY clock

 0 : f(DDCM) < f(PHY)

 266 MHz vs 400/450 MHz

 300 MHz vs 400/450 MHz

 333 MHz vs 400/450 MHz

 400 MHz vs 450 MHz

 1 : f(DDCM) >= f(PHY)

 450 MHz vs 400/450 MHz

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 06/02/2014
NAVOLCHI – D5.4 Version 1

Confidential document – page 32

 400 MHz vs 400 MHz

<31:1> Not used

Table 4-28– DDCM_PHY_FREQ_RATIO register structure

Name Address Bits Description

IPORT_1_BWL Base+0x6C <0> Enables bandwidth limiter

<4:1> Low priority (when the initiator has to be limited)

<12:5> Time window where the bandwidth has to be consumed

<16:13> Fixed value for segment counter decrease

<20:17> Thresholds (expressed in number of DDCM segments)

<28:21> Maximum segment counter value

<31:29> Not used

Table 4-29– IPORT_1_BWL register structure

Name Address Bits Description

IPORT_16_BWL Base+0xA8 <0> Enables bandwidth limiter

<4:1> Low priority (when the initiator has to be limited)

<12:5> Time window where the bandwidth has to be consumed

<16:13> Fixed value for segment counter decrease

<20:17> Thresholds (expressed in number of DDCM segments)

<28:21> Maximum segment counter value

<31:29> Not used

Table 4-30– IPORT_16_BWL register structure

Name Address Bits Description

PHY_DEBUG_MODE Base+0xAC <1:0> Specify the PHY data source in debug mode

 “00” : DDCM

 “01” : reserved

 “10” : pattern generator

 “11” : loopback FIFO

<31:2> Not used

Table 4-31– PHY_DEBUG_MODE register structure

Name Address Bits Description

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 06/02/2014
NAVOLCHI – D5.4 Version 1

Confidential document – page 33

INIT_1_8_TX_VC_PRI Base+0xB0 <3:0> Specifies the priority of initiator #1 VC for
QoS arbiter (0 : lowest priority, 15 : highest
priority)

<7:4> Specifies the priority of initiator #2
VC for QoS arbiter

<11:8> Specifies the priority of initiator #3
VC for QoS arbiter

<15:12> Specifies the priority of initiator #4
VC for QoS arbiter

<19:16> Specifies the priority of initiator #5
VC for QoS arbiter

<23:20> Specifies the priority of initiator #6
VC for QoS arbiter

<27:24> Specifies the priority of initiator #7
VC for QoS arbiter

<31:28> Specifies the priority of initiator #8
VC for QoS arbiter

Table 4-32–INIT_1_8_ TX_VC_PRI register structure

Name Address Bits Description

INIT_9_16_TX_VC_PRI Base+0xB4 <3:0> Specifies the priority of initiator #9 VC for
QoS arbiter (0 : lowest priority, 15 : highest
priority)

<7:4> Specifies the priority of initiator #10
VC for QoS arbiter

<11:8> Specifies the priority of initiator #11
VC for QoS arbiter

<15:12> Specifies the priority of initiator #12
VC for QoS arbiter

<19:16> Specifies the priority of initiator #13
VC for QoS arbiter

<23:20> Specifies the priority of initiator #14
VC for QoS arbiter

<27:24> Specifies the priority of initiator #15
VC for QoS arbiter

<31:28> Specifies the priority of initiator #16
VC for QoS arbiter

Table 4-33–INIT_9_16_ TX_VC_PRI register structure

Name Address Bits Description

TARG_1_8_TX_VC_PRI Base+0xB8 <3:0> Specifies the priority of target #1 VC for QoS
arbiter (0 : lowest priority, 15 : highest
priority)

<7:4> Specifies the priority of target #2 VC

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 06/02/2014
NAVOLCHI – D5.4 Version 1

Confidential document – page 34

for QoS arbiter

<11:8> Specifies the priority of target #3 VC
for QoS arbiter

<15:12> Specifies the priority of target #4 VC
for QoS arbiter

<19:16> Specifies the priority of target #5 VC
for QoS arbiter

<23:20> Specifies the priority of target #6 VC
for QoS arbiter

<27:24> Specifies the priority of target #7 VC
for QoS arbiter

<31:28> Specifies the priority of target #8 VC
for QoS arbiter

Table 4-34–TARG_1_8_ TX_VC_PRI register structure

Name Address Bits Description

TARG_9_16_TX_VC_PRI Base+0xBC <3:0> Specifies the priority of target #9 VC for
QoS arbiter (0 : lowest priority, 15 : highest
priority)

<7:4> Specifies the priority of target #10
VC for QoS arbiter

<11:8> Specifies the priority of target #11
VC for QoS arbiter

<15:12> Specifies the priority of target #12
VC for QoS arbiter

<19:16> Specifies the priority of target #13
VC for QoS arbiter

<23:20> Specifies the priority of target #14
VC for QoS arbiter

<27:24> Specifies the priority of target #15
VC for QoS arbiter

<31:28> Specifies the priority of target #16
VC for QoS arbiter

Table 4-35–TARG_9_16_ TX_VC_PRI register structure

Registers access path
This subsection highlights the path followed by programming traffic to access registers of the
different DDCM modules of a SiP.

Two different contexts can be individuated:

• the registers to be programmed are within the DDCM module in the same die where the
CPU is;

• the registers to be programmed are within the DDCM Module in the other die, where
there is no CPU.

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 06/02/2014
NAVOLCHI – D5.4 Version 1

Confidential document – page 35

Figure 4.1 shows the two different situations.

Figure 4-1: DDCM registers access paths

If registers to be programmed are in the same die of the CPU, the CPU programming traffic
crosses the local interconnect, through the type 1 peripheral subsystem, and reaches the
DDCM type 1 programming port (continuous red arrow). Such a port implements full STBus type
1 protocol, including support for byteenables and 1/2/4/8 bytes operations.

If registers to be programmed are in the other die, the CPU traffic crosses the DDCM module of
the first die, reaches the DDCM module of the second die, from which it’s routed to the local
interconnect of the second die, and after crossing the local peripheral subsystem, it reaches the
type 1 port of the DDCM module in the second die (blue arrow).

Registers in the second die could be accessed also through an internal path, i.e. CPU reaches
the programming port of the DDCM module in die #1, then if registers addresses are related to
registers of the DDCM module in die #2, this can be detected internally and registers

DDCM
Tx

DDCM

Rx

DDCM
Rx

DDCM
Tx

Die #1

Die #2

CPU

Die #1 local
interconnect

Die #2 local
interconnect

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 06/02/2014
NAVOLCHI – D5.4 Version 1

Confidential document – page 36

configuration commands can be sent directly to the DDCM module in die #2 (dashed red arrow).
This second programming option has been deeply evaluated and because of its complexity it
will not be implemented.

Notice that the programming logic will implement a mechanism allowing to program DDCM
registers in a safe way, meaning that the actual writing of a registers will be prevented if there
are transactions in progress across the DDCM, and the programming of the register can impact
the safe completion of the operations in progress. Typical registers that can lead to such an
issue are the ones containing the threshold values for the credit-based flow control.

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 06/02/2014
NAVOLCHI – D5.4 Version 1

Confidential document – page 37

5 Architecture
As shown in figure 5.1, the DDCM top level in each die consists of a transmitter (DDCM Tx)
and a receiver (DDCM Rx).
In such a figure it’s possible to see the two information flows supported by a complete DDCM
architecture, i.e.

• requests from STNoC/STBus/AMBA-AXI initiators in chip 1 to STNoC/STBus/AMBA-AXI
targets in chip 2, responses from STNoC/STBus/AMBA-AXI targets in chip 2 to
STNoC/STBus/AMBA-AXI initiators in chip 1, virtual wires from chip 1 to chip 2 (continuous
lines);

• requests from STNoC/STBus/AMBA-AXI initiators in chip 2 to STNoC/STBus/AMBA-AXI
targets in chip 1, responses from STNoC/STBus/AMBA-AXI targets in chip 1 to
STNoC/STBus/AMBA-AXI initiators in chip 2, virtual wires from chip 2 to chip 1 (dotted lines).

Figure 5-1: DDCM top level architecture and information flow

The DDCM transmitter (DDCM Tx) is responsible for

• receiving requests from STNoC/STBus/AMBA-AXI initiators in the same die and sending them
to STNoC/STBus/AMBA-AXI targets in the other die;

DDCM
Tx

DDCM
Rx

Die #1

Die #2

STNoC/STBus/
AXI initiator

Virtual
wires

Virtual
wires

Request traffic flow
Response traffic flow
Virtual wires

Unidirectional
physical links

DDCM
Tx

DDCM
Rx

STNoC/STBus/
AXI target

STNoC/STBus/
AXI initiator

STNoC/STBus/
AXI target

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 06/02/2014
NAVOLCHI – D5.4 Version 1

Confidential document – page 38

• receiving responses from STNoC/STBus/AMBA-AXI targets in the same die and sending them
to STNoC/STBus/AMBA-AXI initiators in the other die;

• sampling ancillary signals (virtual wires) generated in the same die at a specified rate and
sending samples to the other die.

The DDCM receiver (DDCM Rx) is responsible for
• receiving requests from STNoC/STBus/AMBA-AXI initiators in the other die and sending them

to STNoC/STBus/AMBA-AXI targets in the same die;
• receiving responses from STNoC/STBus/AMBA-AXI targets in the other die and sending them

to STNoC/STBus/AMBA-AXI initiators in the same die;
• receiving ancillary signals samples generated in the other die and sending them to the proper

destination in the same die.
Figure 5-2 shows a full architectural view of an DDCM, highlighting the separation between an
DDCM transmitter and an DDCM receiver.

Figure 5-2: DDCM detailed architecture

Figure 5-3 shows the architecture of the DDCM highlighting the connections with initiators and
targets across an STNoC interconnect. In this picture it’s possible to see clearly how request and
response traffic streams flow.

PHY adapter PHY adapter

Die n+1 Die n+1

IDN Plug transmitter IDN Plug receiverDie n

PHY RxPHY Tx

FC

FC & QoS Router

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 06/02/2014
NAVOLCHI – D5.4 Version 1

Confidential document – page 39

Figure 5-3: DDCM detailed architecture highlighting traffic streams flows

Figure 5-4 shows the connection and the traffic streams flows between two dice, highlighting the
two DDCMs architectures and their crossing. Specifically, the orange line represents the request
traffic stream flowring from initiator 1 in die #1 towards target 2 in die #2, while the yellow line
represents the response traffic stream flowing from target 2 in die #2 towards initiator 1 in die
#1.

Figure 5-4 : Traffic streams flows between two dice

Next section describes in detail all the DDCM building-blocks.

Init IC

Targ IC

FC
QoS

PHY
adapt.
Tx

PHY
Tx

Init OC

Targ OC

Router
PHY
adapt.
Rx

PHY
Rx

Init 1

Targ 1

STNoC

Transmitter

Receiver

IDN Plug

Init IC

Targ IC

FC
QoS

PHY
adapt.
Tx

PHY
Tx

Init OC

Targ OC

Router
PHY
adapt.
Rx

PHY
Rx

Init 2

Targ 2

STNoC

Transmitter

Receiver

IDN Plug

Die #1 Die #2

Init IC

Targ IC

FC
QoS

PHY
adapt.
Tx

PHY
Tx

Init OC

Targ OC
Router

PHY
adapt.
Rx

PHY
Rx

Init 1

Targ 1

STNoC

Transmitter

Receiver

IDN Plug

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 06/02/2014
NAVOLCHI – D5.4 Version 1

Confidential document – page 40

6 Building-blocks
In this section all the DDCM building-blocks are described.

Transmitter
The DDCM transmitter performs the following functions:

• Buffering of STNoC, STBus, AMBA AXI traffic;

• Sampling of virtual wires

• STNoC, STBus, AMBA AXI traffic size conversion when required

• Frequency conversion when required

• STNoC, STBus, AMBA AXI traffic and virtual wires encapsulation within IDN
segments

• Credit-based flow control

• IDN segments QoS management

• IDN segments serialization

• Phyts encryption when enabled

• Phyts transmission as optical signals exploiting the plasmonic components

Request Input Channel

The Request Input Channel (ReqIC) deals with STNoC request traffic generated either by an
STNoC upstream interface, or by an STBus or an AMBA AXI initiator Network Interface.

It is divided in three main parts:
• Kernel, responsible for buffering the incoming STNoC request traffic and performing

flit size conversion when required;
• FIFOs (header FIFO and payload FIFO), where STNoC request information is stored

and performing frequency conversion when required;
• Shell, responsible for encapsulating the STNoC requests into IDN segments by

generating a proper IDN header.

Kernel
SSTNoC
packet

assembling

Frequency
Conversion

Error/Power
Management

Kernel
STNoC
packet

assembling

Frequency
Conversion

Error/Power
ManagementS

S
TN

o
C

In
te

rf
ac

e
S

S
T

N
o

C
In

te
rf

ac
e

STNoC
packets

E
rr

o
r

M
an

.
U

ni
t

E
rr

or
 M

an
.

U
ni

t

IDN
segments

Shell
Handshake IP

protocol

Encodes IP
protocol

Programming

Security access

Shell
Handshake IDN

protocol

Encodes IDN
protocol

Programming

6-1: Input channel generic structure

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 06/02/2014
NAVOLCHI – D5.4 Version 1

Confidential document – page 41

The IC kernel in turn is composed of the following building-blocks:

• downstream interface (DS) responsible for collecting STNoC flits and auxiliary signals
from STNoC interface;

• input FSM (IFSM) responsible for discriminating between header and payload flits and
storing them in the respective FIFOs.

The IC shell in turn is composed of the following building-blocks:

• link scheduler (LS) responsible for reading header or payload FIFO depending on
incoming traffic shape;

• upstream interface (US) responsible for propagating the proper flit and its associated
signals;

• encapsulation module (Encap) responsible for generating the IDN header and
encapsulating the STNoC flits and auxiliary signals within IDN segments; here, since the
network layer header is related to the local network topology, only the STNoC transport
layer header is encapsulated and propagated across the physical channel, while the
network layer header is cut.

Header FIFO

Payload FIFO

IFSM LSDS US Encap.

Kernel Shell

6-2: Input channel micro-architecture

The encapsulation module of the Request Input Channel, dealing with STNoC requests, has the
function of generating the IDN header and to add it to the STNoC flit and auxiliary signals, so to
build the IDN segment to be serialized and propagated across the physical channel.

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 06/02/2014
NAVOLCHI – D5.4 Version 1

Confidential document – page 42

IDN segment
generator

Encapsulationmodule

6-3: Request IC encapsulation module function

Table 6.1 shows the IDN header structure.

Field name Size Bits Description
IC ID 6 <5:0> Input Channel identifier
Type 2 <7:6> IDN segment type (STNoC, virtual wires, credit)
Segment ID 2 <9:8> IDN segment identifier (first, last, intermediate)

Table 6.1 – IDN header structure

The meaning of the header fields is detailed in the following.

• IC ID is the identifier of the input channel where the information to be transmitted (both
STNoC transactions and virtual wires) comes from; marking segments with the IC ID is
key for allowing segments interleaving. If the segment is related to virtual wires (type =
“01”), bits <2:0> of the IC ID field represents the number of phyts required to transport
the virtual wires information (“---000” = 1 phyt, “---001” = 2 phyts, “---010” = 3 phyts,
“---011” = 4 phyts, “---100” = 5 phyts, “---101” = 6 phyts), while bit <5> tells whether
the transmitted bundle is the fifth one.

• Type allows the DDCM receiver to understand if the segment belongs to an STNoC
transaction (“00”) or to virtual wires (“01”), in which case it is forwarded to the
corresponding OC, or if it carries credit information (“10”), in which case it is sent to the
associated DDCM transmitter for computing the new credits value.

• Segment ID specifies if the segment is the first (“01”), the last (“10”) or an intermediate
one (“00”) for the transmitted transaction; this information is important for the correct
reconstruction of the transaction at destination. If the segment is related to virtual wires
(type = “01”), the segment ID field assumes the meaning of the virtual wires bundle
identifier (“00” = bundle 0, “01” = bundle 1, “10” = bundle 2, “11” = bundle 3). If the
segment is related to credits information, the segment ID field represents the number of
phyts required to transport the credit information (“00” = 1 phyt, “01” = 2 phyts, “10” = 3
phyts, “11” = 4 phyts).

Response Input Channel

The Response Input Channel (ResIC) deals with STNoC response traffic generated either by an
STNoC upstream interface, or by an STBus or an AMBA AXI target Network Interface.

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 06/02/2014
NAVOLCHI – D5.4 Version 1

Confidential document – page 43

It is divided in three main parts:
• Kernel, responsible for buffering the incoming STNoC response traffic and performing

flit size conversion when required;
• FIFOs (header FIFO and payload FIFO), where STNoC response information is stored

and performing frequency conversion when required;
• Shell, responsible for encapsulating the STNoC responses into IDN segments by

generating a proper IDN header.

Kernel and Shell structure of the ResIC are the same of the ReqIC.

The encapsulation module of the Response Input Channel, dealing with STNoC responses, has
the function of performing the inverse src remapping, generating the IDN header and to add it to
the STNoC flit and auxiliary signals, so to build the IDN segment to be serialized and propagated
across the physical channel.

IDN segment
generator

Encapsulationmodule

Inverse src
remapper

6-4: Response IC encapsulation module function

Virtual Wires Input Channel

The Virtual Wires Input Channel (VWIC) deals with asynchronous signals not following any
standard protocol, such as interrupts, power down handshake, etc.

The Virtual Wires IC interface can be up to 400 bits wide and is organized as a set of 5 bundles,
each up to 80-bits wide. However for the input port it’s possible to specify how many wires out
of the existing ones are meaningful, through a dedicated register; this possibility allows to reuse
the same DDCM VWIC block in different systems, where the number of virtual wires is
different.

In order to transmit virtual wires information virtual wires bundles are sampled periodically, at a
rate specified in the related configuration register, and the sampled values are stored into the
proper section of the VWIC, whose elements are also up to 400 bits wide and are split into 5
bundles up to 80-bits wide, in order to be transmitted across the die-to-die channel as a set of 5
segments; each bundle is marked by a proper identifier to allow the correct reconstruction of
virtual wires information at destination.

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 06/02/2014
NAVOLCHI – D5.4 Version 1

Confidential document – page 44

Notice that, due to their intrinsic asynchronous nature, virtual wires are properly synchronized in
DDCM clock domain by a proper number of synchronization FFs.

In order to avoid to transmit twice or more the same information, if two back-to-back virtual
wires bundles samples are equal, the second one is not transmitted again, since this means no
new events to be transmitted have occurred. According to that, when the sampling rate is chosen
equal to the DDCM clock frequency, the transmission of virtual wires information follows
actually a on-event approach, i.e. as soon as at least one wire changes its state from ‘0’ to ‘1’ the
port configuration is stored into the FIFO.

Figure 6-5 –Virtual Wires IC port bundle sampling

If programmed bundles sampling rates are such that more bundles have to be transmitted
simultaneously, a proper arbitration is performed in order to select the bundle that can be
transmitted, the others waiting for their turn, as shown in figure 7-6. Bundles priorities are
simply determined by bundle index, i.e. bundle 1 has the highest priority, bundle 5 has the
lowest.

Virtual Wires IC port

Virtual Wires register

DDCM clk

Cycles
counter

Sampling
rate register

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 06/02/2014
NAVOLCHI – D5.4 Version 1

Confidential document – page 45

Figure 6-6 - Virtual wires bundles arbitration

The number of phyts required to transmit the virtual wires bundle information is transported in
the IC ID field of the IDN segment header; this is required because, while all the STNoC
segments have a fixed size, the virtual wires bundles segments have a different size, linked to the
number of bits used in each bundle. With this approach the same information can be transported
in case of physical channels of different width.

Finally, it’s important to highlight that only level signals are supported as virtual wires, while
pulses are not supported, since they would be lost either if their period was lower than the virtual
wires sampling period, or if, even having a period greater the sampling period, the related virtual
wires bundles lost the arbitration for a time long enough to make the pulse to disappear.

Credits Input Channel

The Credits Input Channel (CIC) deals with the credit information coming from the DDCM
receiver, related to the segment FIFOs of the OCs.

Flow Control and QoS

The Flow Control and QoS modules performs arbitration between the IDN segments generated
by the different Input Channels, according to the selected QoS policy, taking into account the
numer of credits available for each IC. If an IC has no credits available, it won’t be arbitrated, so

Virtual Wires port

DDCM clk

Cycles
counter

Sampling
rate

Cycles
counter

Cycles
counter

Bundles

Encapsulation
block

. . .

.

.

.

. . .

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 06/02/2014
NAVOLCHI – D5.4 Version 1

Confidential document – page 46

that at the end the winner of the arbitration will be an IC sure to see its segment propagated to
the other die across the physical channel.

Arbitration schemes
The QoS module supports three different arbitration schemes:

• Priority-based
• Priority-based with bandwidth limitation
• LRA (Less Recently Arrived)

The required arbitration scheme can be programmed via software properly setting the dedicated
registers (see section 8).

Priority-based

The simplest arbitration scheme supported by the QoS module is based on priority, expressed
through a 4 bits value. Provided that credits have always the highest priority, followed by virtual
wires, for all the STNoC ICs it’s possible to program their priorities so to follow a specific
criterion for segment arbitration; STNoC ICs priorities are stored in dedicated DDCM registers
and are propagated to the arbiter in the QoS module. Notice that in case of equal priority values,
the winner of the arbitration will be determined according to a positional approach so as in
STBus node arbiters.
Priority-based arbitration scheme is the default one in DDCM QoS module.

Priority-based with bandwidth limitation

With this arbitration scheme the initiators are arbitrated according to their priority, but when they
consume the bandwidth programmed for them within a specific time window, their priority is
lowered, so to allow other initiators normally having lower priorities to win the arbitration.
In order to enable bandwidth limitation in DDCM QoS module, bandwidth limiters have to be
activated and configured via the proper registers.

LRA (Less Recently Arrived)

This arbitration scheme allows to take into account the time at which an initiator has issued its
request, so to be priviledged in case of arbitration with other initiators issuing their requests later.

PHY Adapter

The PHY adapter transmitter transforms DDCM segments into a format suitable for being
propagated across the physical channel; in particular this block is responsible for segment
serialization for exploiting the narrower physical channel, and channel encoding for reducing
dynamic power consumption.
The output of the PHY adapter is the input of the PHY, responsible for actual transmission
across the physical channel.
Notice that, during the PHY test phase, the input of the PHY does not come from the PHY
adapter anymore, but rather from external test sources, i.e. the pattern generator, according to the
test interface described in table 6.2.
The PHY adapter transmitter is composed of a number of digital blocks and some analog blocks.
Figure 6-7 shows all the PHY adapter transmitter building blocks together with the PHY
building-blocks, so as they will be implemented in the project demonstrator (digital modules
onto FPGA, analog blocks on a dedicated board).

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 06/02/2014
NAVOLCHI – D5.4 Version 1

Confidential document – page 47

Figure 6-7 – DDCM transmitter layer A building-blocks

Digital blocks

The PHY adapter transmitter digital blocks are the bi-synchronous FIFO, the encoders for power
consumption reduction and the serializer.

Bi-synchronous FIFO
The bi-synchronous FIFO plays the twofold role of storage buffer, where incoming data are
stored before being processed for transmission, and retiming stage, breaking critical paths
between data sources and off-chip transmitter.
Data are stored into the FIFO at the speed of the digital system, and are taken from the FIFO at
the speed of the off-chip transmitter.

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 06/02/2014
NAVOLCHI – D5.4 Version 1

Confidential document – page 48

Figure 6-8 : Bi-synchronous FIFO micro-architecture

Optical Bus Inverter Encoder
The Optical Bus Inverter (OBI) Encoder aims at minimizing the number of ‘1‘ in the data word
to be transmitted, in order to minimize the number of emitters turned-on.
The algorithm implemented by this block consists in counting the number of ‘1‘ in the data
word, and inverting the data itself if such a number is greater than half data size; in case of
inversion a specific flag (inv) is set.

Figure 6-9 : Optical Bus Inverter Encoder microarchitecture

Serializer
The serializer performs the segmentation of the incoming data according to the selected output
data size.
It is implemented as a parametric block that can be properly configured depending on the
requirements of the system; in the case of the NAVOLCHI demonstrator the incoming data is 90

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 06/02/2014
NAVOLCHI – D5.4 Version 1

Confidential document – page 49

bits wide, and the output data is 3 bits wide, meaning that a data word is segmented into 30
smaller chunks of bits.

Figure 6-10 : Serializer top level

Bus Inverter Encoder
The Bus Inverter (OI) Encoder aims at minimizing the Hamming distance between two
consecutive data words to be transmitted, in order to minimize the switching activity of emitters.
The algorithm implemented by this block consists in evaluating the Hamming distance between
two back-to-back data words, i.e. the current and the previous ones, and inverting the current one
if such a distance is greater than half data size; in case of inversion a specific flag (inv) is set.

Figure 6-11 : Bus Inverter Encoder microarchitecture

Analog blocks

The PHY adapter transmitter analog blocks are the modulator driver and the modulator.

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 06/02/2014
NAVOLCHI – D5.4 Version 1

Confidential document – page 50

Modulator driver
This block has the task of shaping the voltage levels generated by the digital parts according to
the used CMOS technology in order to be able to drive the analog parts controlling the
plasmonic emitters.
Just the VHDL behavioural model has been implemented for this block at the moment.

Encryption module
Whatever is the output of the PHY adapter, it can be encrypted simply performing a XOR with
the input key coming from the external security encoder module. A key exists for each phyt
(hi/lo), and the same keys are used in the receiver for the proper decoding.

PHY

The PHY implements the DDCM transmitter physical layer, responsible for the transmission at
physical level of the phyts across the physical channel. It is composed of plasmonic emitters and
plasmonic modulators.

Receiver
The DDCM receiver performs the following functions:

• phyts acquisition exploiting plasmonic components;

• phyts decryption when required;

• IDN segments assembly (deserialization);

• IDN segments routing;

• STNoC, STBus, AMBA AXI traffic and virtual wires reconstruction from IDN
segments;

• frequency conversion when required;

• STNoC, STBus, AMBA AXI traffic size conversion when required;

• generation of STNoC, STBus, AMBA AXI traffic;

• generation of virtual wires traffic.

• credit information generation

PHY

The PHY implements the DDCM receiver physical layer, responsible for the acquisition at
physical level of the phyts transmitted across the physical channel. It is composed of plasmonic
amplifiers and plasmonic photodetectors.

PHY Adapter

It transforms phyts received from the PHY into DDCM segments; in particular this block is
responsible for channel decoding for reconstructing the actual data previously encoded for
reducing dynamic power consumption, and DDCM segments assembly through deserialization.
The input of the PHY adapter is the output of the PHY, responsible for actual transmission
across the physical channel.
The PHY adapter receiver is composed of some analog blocks and a number of digital blocks.

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 06/02/2014
NAVOLCHI – D5.4 Version 1

Confidential document – page 51

Figure 6-12 shows all the PHY adapter receiver building blocks together with the PHY building-
blocks, so as they will be implemented in the project demonstrator (digital modules onto FPGA,
analog blocks on a dedicated board).

Figure 6-12 – DDCM receiver layer A building-blocks

Analog blocks

The PHY adapter receiver analog blocks are the Trans Impedance Amplifier (TIA) and the
comparator.

Trans Impedance Amplifier
This block acts as a current-to-voltage converter, taking the photocurrent generated by the
plasmonic detector and generating a proper voltage, representing a logic ‘0’, a logic ‘1’ or simply
noise (i.e. no detection).
Just the VHDL behavioural model has been implemented for this block at the moment.

Comparator
This block has the task of shaping the voltage levels generated by the TIA according to the used
CMOS technology. It has also the task of generating a start signal to when actual information is
received, allowing keeping the digital parts of the receiver idle when the TIA input current is
simply noise and not a signal carrying actual information.
Also for this block just the VHDL behavioural model has been implemented at the moment.

Digital blocks

The PHY adapter receiver digital blocks are the deserializer, the decoders for power
consumption reduction and the bi-synchronous FIFO.

Decryption module
The input of the PHY adapter can be decrypted, if previously encrypted during transmission,
simply performing a XOR with the input key coming from the external security decoder module.
A key exists for each phyt (hi/lo), and the same keys ate used in the transmitter for the proper
encoding.

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 06/02/2014
NAVOLCHI – D5.4 Version 1

Confidential document – page 52

Bus Inverter Decoder
This block relies on the 4th bit of the incoming data (inv flag) to determine whether the
remaining 3-bits have to be inverted or not, according to what has been done by the related
encoder in the transmitter, in order to obtain the original 3-bits data.

Figure 6-13 : Bus Inverter Decoder microarchitecture

Deserializer
The deserializer performs the reassembly of the incoming data according to the selected output
data size.
It is implemented as a parametric block that can be properly configured depending on the
requirements of the system; in the case of the NAVOLCHI demonstrator the incoming data is 3
bits wide, and the output data is 90 bits wide, meaning that an output data is built using 30 input
3-bits words.

Figure 6-14 : Deserializer top level

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 06/02/2014
NAVOLCHI – D5.4 Version 1

Confidential document – page 53

Optical Bus Inverter Decoder
This block relies on the 90th bit of the incoming data (inv flag) to determine whether the
remaining 89-bits have to be inverted or not, according to what has been done by the related
encoder in the transmitter, in order to obtain the original 89-bits data.

Figure 6-15 : Optical Bus Inverter Decoder microarchitecture

Bi-synchronous FIFO
Also in the receiver the bi-synchronous FIFO plays the twofold role of storage buffer, where
incoming data are stored after they have been processed after reception, and retiming stage,
breaking critical paths between off-chip receiver and data destinations.

Router

The router sends the re-generated IDN segment towards the proper Output Channel.

Request Output Channel

The Request Output Channel (ReqOC) generates STNoC request traffic either towards an
STNoC dowstream interface, or towards an STBus or an AMBA AXI target Network Interface.

It is divided in three main parts:
• Shell, responsible for the reconstruction of the STNoC request traffic from the IDN

segments regenerated by the PHY adapter.
• FIFOs (header FIFO and payload FIFO), where the reconstructed STNoC request

information is stored and performing frequency conversion when required;
• Kernel, responsible for performing flit size conversion when required, performing the

src-remapping and generating the local routing information according to the incoming
address and the local (local to the die) network topology.

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 06/02/2014
NAVOLCHI – D5.4 Version 1

Confidential document – page 54

STNoC
packets

S
S

T
N

o
C

Interface
S

S
T

N
o

C
interface

IDN
segments

Kernel
SSTNoC
packet

assembling

Frequency
Conversion

Error/Power
Management

Kernel
STNoC

packet
assembling

Frequency
Conversion

Power
Management

Shell
Handshake IP

protocol

Encodes IP
protocol

Programming

Security access

Shell
Handshake IDN

protocol

Decodes IDN
protocol

Programming

6-16: Output channel generic structure

The IC shell in turn is composed of the following building-blocks:

• IDN segment FIFO (Seg FIFO) responsible for storing IDN segments after the
deserialization performed by the PHY adapter and generating the credit information to be
sent to the other die;

• extraction module (Extract) responsible for removing the IDN header and re-
generating the original STNoC flits and related auxiliary signals; at this point only the
STNoC transport layer header is re-generated, while the network layer header, depending
on the local network topology, is built from scratch relying on network structure
awareness and some programming information (QoS, routing).

• input FSM (IFSM) responsible for discriminating between header and payload flits and
storing them in the respective FIFOs.

The IC kernel in turn is composed of the following building-blocks:

• output FSM (IFSM) responsible for reading header or payload FIFO depending on
incoming traffic shape;

• upstream interface (US) responsible for propagating the proper flit and its associated
signals.

6-17: Output channel micro-architecture

Header FIFO

Payload FIFO

IFSM OFSMExtr. US

Shell Kernel

Seg FIFO

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 06/02/2014
NAVOLCHI – D5.4 Version 1

Confidential document – page 55

The extraction module of the Request Output Channel, dealing with STNoC requests, has the
function of regenerating the STNoC flits and auxiliary signals, performing the src remapping,
generating the QoS information and generating the routing informationaccording to the topology
of the network of the local die.

IDN segment
parser

Extraction module

Src-remapper

QoS info gen.

Routing info
gen.

6-18 Request OC encapsulation module function

Response Output Channel

The Response Output Channel (ReqOC) generates STNoC response traffic either towards an
STNoC dowstream interface, or towards an STBus or an AMBA AXI initiator Network
Interface.

It is divided in three main parts:
• Shell, responsible for the reconstruction of the STNoC response traffic from the IDN

segments regenerated by the PHY adapter.
• FIFOs (header FIFO and payload FIFO), where the reconstructed STNoC response

information is stored and performing frequency conversion when required;
• Kernel, responsible for performing flit size conversion when required and generating the

local routing information according to the incoming src and the local (local to the die)
network topology.

The extraction module of the Response Output Channel, dealing with STNoC responses, has the
function of regenerating the STNoC flits and auxiliary signals, generating the QoS information
and generating the routing informationaccording to the topology of the network of the local die.

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 06/02/2014
NAVOLCHI – D5.4 Version 1

Confidential document – page 56

IDN segment
parser

Extraction module

QoS info gen.

Routing info
gen.

6-19 Response OC encapsulation module function

Virtual wires Output Channel

The Virtual Wires Output Channel (VWOC) generates asynchronous signals not following any
standard protocol, such as interrupts, power down handshake, etc.

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 06/02/2014
NAVOLCHI – D5.4 Version 1

Confidential document – page 57

7 Reset strategy
The reset strategy adopted in the DDCM with plasmonics-based PHY is exactly the same as in
the case of electrical PHY. Refer to document D5.1 for details about this feature.

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 06/02/2014
NAVOLCHI – D5.4 Version 1

Confidential document – page 58

8 Power control
The strategy adopted in the DDCM for reducing as much as possible the power consumption is
exactly the same as in the case of electrical PHY; the same two main mechanisms are used for
achieving this objective:

• Activity-driven clock gating

• Source encoding

A detailed description of the activity-driven clock gating can be found in document D5.1; while
the source encoding techniques implemented via the Bus Inverter (BI) and the Optical Bus
Inverter (OBI) are described in document MS29 (Data codecs for power consumption
reduction).

