
FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 22/04/2014
NAVOLCHI – D5.6 Version 1

Confidential document – page 1

Nano Scale Disruptive Silicon-Plasmonic Platform for Chip-
to-Chip Interconnection

Generic DDCM compatible with plasmonics-based PHY

design and verification database

 Deliverable no.: D5.6
 Due date: 30/04/2014
 Actual Submission date: 22/04/2014
 Authors: ST
 Work package(s): WP5
 Distribution level: CO1 (NAVOLCHI Consortium)
 Nature: Document, available online in the restricted area
 of the NAVOLCHI webpage

List of Partners concerned

Partner
number

Partner name Partner
short
name

Country Date
enter
project

Date
exit
project

1 Karlsruher Institut für Technologie KIT Germany M1 M36

2 INTERUNIVERSITAIR MICRO-
ELECTRONICA CENTRUM VZW IMCV Belgium M1 M36

3 TECHNISCHE UNIVERSITEIT
EINDHOVEN TU/e Netherlands M1 M36

4
RESEARCH AND EDUCATION
LABORATORY IN INFORMATION
TECHNOLOGIES

AIT Greece
M1 M36

5 UNIVERSITAT DE VALENCIA UVEG Spain M1 M36
6 STMICROELECTRONICS SRL ST Italy M1 M36
7 UNIVERSITEIT GENT UGent Belgium M1 M36

1 PU = Public

PP = Restricted to other programme participants (including the Commission Services)
 RE = Restricted to a group specified by the consortium (including the Commission Services)
 CO = Confidential, only for members of the consortium (including the Commission Services)

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 22/04/2014
NAVOLCHI – D5.6 Version 1

Confidential document – page 2

Deliverable Responsible
 Organization: STMicroelectronics
 Contact Person: Alberto Scandurra
 Address: Stradale Primosole, 50 – 95121 Catania
 Italy
 Phone: +39 095 740 4432
 Fax: +39 095 740 4008
 E-mail: alberto.scandurra@st.com

Executive Summary
This document describes the data base containing the design and the verification environment of
a generic Dual Die Communication Module (DDCM) able to support a pasmonics-based PHY.
The file system structure as well as the tools used for the design and the verification of the block
is described.

Change Records

Version Date Changes Author
0.1 (draft) 2014-04-18 Start Alberto Scandurra

1 (submission) 2014-04-22 Final version Alberto Scandurra

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 22/04/2014
NAVOLCHI – D5.6 Version 1

Confidential document – page 3

1. Contents

1. INTRODUCTION ...4

2. DATA BASE STRUCTURE ..6

2.1 Design environment ...6
2.2 Verification environment ..7
2.3 Synthesis environment ...9

3. CONCLUSION .. 12

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 22/04/2014
NAVOLCHI – D5.6 Version 1

Confidential document – page 4

1. Introduction
The Dual Die Communication Module (abbreviated DDCM) is the building-block responsible
for the interconnection of different dice within a so called Network in Package (NiP), the
communication system enabling inter dice data transmission in the context of Systems in
Package (SiP) technology.

According to a widely used approach, the DDCM is seen composed of two main building blocks:
• the DDCM controller, responsible for managing incoming/outgoing

STNoC/SBus/AMBA-AXI traffic, generating IDN segments through encapsulation and
preparing them to be sent to the PHY transmitter, as well as collecting them from the
PHY receiver;

• the DDCM PHY, responsible for transmitting output phyts across the physical link and
collecting inputs phyts from the physical link.

As shown in figure 1.1, the DDCM top level in each die consists of a transmitter (DDCM Tx)
and a receiver (DDCM Rx).

Figure 1-1: DDCM top level architecture and information flow

DDCM
Tx

DDCM
Rx

Die #1

Die #2

STNoC/STBus/
AXI initiator

Virtual
wires

Virtual
wires

Request traffic flow
Response traffic flow
Virtual wires

Unidirectional
physical links

DDCM
Tx

DDCM
Rx

STNoC/STBus/
AXI target

STNoC/STBus/
AXI initiator

STNoC/STBus/
AXI target

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 22/04/2014
NAVOLCHI – D5.6 Version 1

Confidential document – page 5

In such a figure it’s possible to see the two information flows supported by a complete DDCM
architecture, i.e.

• requests from STNoC/STBus/AMBA-AXI initiators in chip 1 to STNoC/STBus/AMBA-AXI
targets in chip 2, responses from STNoC/STBus/AMBA-AXI targets in chip 2 to
STNoC/STBus/AMBA-AXI initiators in chip 1, virtual wires from chip 1 to chip 2 (continuous
lines);

• requests from STNoC/STBus/AMBA-AXI initiators in chip 2 to STNoC/STBus/AMBA-AXI
targets in chip 1, responses from STNoC/STBus/AMBA-AXI targets in chip 1 to
STNoC/STBus/AMBA-AXI initiators in chip 2, virtual wires from chip 2 to chip 1 (dotted lines).

Figure 1-2 shows a full architectural view of an DDCM, highlighting the separation between an
DDCM transmitter and an DDCM receiver.

Figure 1-2: DDCM detailed architecture

The DDCM is a parametric design that, depending on the SoC where it is used, can be
configured properly in order to meet system requirements and needs in terms of interfaces,
FIFOs sizes, clock domains synchronization and functionality.

So as for the DDCM with electrical PHY, a VHDL model of the plasmonics-based PHY has
been developed in order to be co-simulated with the digital parts of the DDCM described as
synthesizeable VHDL.

The next section describes the environment where such a block has been designed and verified,
highlighting the data base structure, the methodologies adopted to manage the mentioned
parametric approach and the tools used in the different phases of the design flow.

PHY adapter PHY adapter

Die n+1 Die n+1

IDN Plug transmitter IDN Plug receiverDie n

PHY RxPHY Tx

FC

FC & QoS Router

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 22/04/2014
NAVOLCHI – D5.6 Version 1

Confidential document – page 6

2. Data base structure
The DDCM data base is located in the ST Interconnect System Group server design area under
the directory ddcm_lib identifying the design library.
The ddcm_lib directory contains the following two subdirectories:

• dev (development) containing the generic design and the generic verification
environment;

• run containing the simulation area for a set of specific configurations of the design.

The directory dev contains the following subdirectories:

• doc containing the functional specification of the block (deliverable D5.4 in NAVOLCHI
project context);

• rtl_vhdl containing the VHDL files representing the rtl description of the DDCM top
level and all its building-blocks;

• model containing the VHDL files representing the rtl behavioural description of the
analog building-blocks and the plasmonic devices implementing the plasmonics-based
PHY;

• corekit containing the generic view of the DDCM;
• verif_env containing the generic verification environment, i.e. testbench and stimuli

sources;
• verif_run containing the tests to verify the different functionality of the DDCM;
• synth containing the area for the logic synthesis of the DDCM.

2.1 Design environment
The design environment consists of the directory rtl_vhdl and corekit.

In the rtl_vhdl directory there are the files describing VHDL entity and architecture of the
DDCM top level and all its building-blocks (i.e. transmitter, receiver, FIFOs, etc.)
All these blocks are described following a parametric approach, so that after setting a proper set
of parameters to the required values, the generic design gets configured accordingly and
becomes specific for a well defined application. As described in the DDCM functional
specification (deliverable D5.4) the design parameters allow to characterize the DDCM in terms
of interfaces size, FIFO depth, traffic management policy, clock frequencies, etc.).
The VHDL description is technology independent, that is to say the VHDL files describe the
structure and the functionality of the DDCM, with no links with the CMOS technology with
which the DDCM itself will be implemented.

In the model directory there are the files describing the VHDL behavioural models of the analog
electronic parts (modulator driver, TIA, comparator) and the plasmonic devices (emitter,
modulator, waveguide, detector) to be co-simulated with the digital parts of the DDCM.

The corekit directory contains a set of scripts allowing to build the so called corekit, a file
containing all the information about the generic design and allowing by means of a GUI
(Graphic User Interface) the user to assign the required values to the design parameters and
getting a specific configuration of the DDCM, moving from the generic description.

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 22/04/2014
NAVOLCHI – D5.6 Version 1

Confidential document – page 7

While the VHDL description is tool independent, i.e. the VHDL files can be written with any
text editor, the corekit generation is tool dependent, and is based on the so called core tools
developed by Synopsys.
Specifically, the tool moving from the generic VHDL description and building the corekit is
called coreBuilder (see fig. 2-1), while the tool allowing to use the corekit and generating a
specific configuration of the DDCM after having assigned proper values to the parameters is
called coreConsultant (see fig 2-2).

Figure 2-1: corekit generation flow through coreBuilder

Figure 2-2: corekit utilization flow through coreConsultant

2.2 Verification environment
The verification environment, strongly based on the one developed for the DDCM with electrical
PHY, consists of the directories verif_env and verif_run.

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 22/04/2014
NAVOLCHI – D5.6 Version 1

Confidential document – page 8

The verif_env directory in turn contains the following main subdirectories:
• rtl_tb containing the VHDL testbench, i.e. the structure instantiating the DDCM and the

plasmonics-based PHY behavioural model, considered the DUT (Device Under Test) and
the traffic generators for stimulating the design and verify its behaviour accordingly;

• e containing the functional description of the traffic generators in e language, an object
oriented high level language specific for verification suites;

• config_files containing a variety of files with different set of design parameters so to
configure the DDCM in different ways in order to verify as many different specific
implementations as possible;

• tests containing the description of different tests, aiming at stimulating the different
DDCM functionalities.

The verif_env directory contains generic descriptions of all the structures described in it
(testbench, stimuli generators, tests); the verif_run directory contains a replication of the
verif_env subdirectories but configured according to the design parameters, and the specific for a
well defined application or product employing the DDCM.

Figure 2-3 shows the DDCM verification environment structure.

Figure 2-3: DDCM verification environment

In this figure the central block called Stac2Stac represents the DUT composed of two DDCM
connected to each other, implementing the communication between two dice.
The top left red block called Sequences handler is the module responsible for the traffic
generation in order to stimulate the DUT. The bottom red block called Checkers/Scoreboard is
the module responsible for the actual verification of the functionality of the DUT, performing
specific checks on peculiar functionalities and checking the correct transfer of information from
one die to another across the two DDCM modules.

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 22/04/2014
NAVOLCHI – D5.6 Version 1

Confidential document – page 9

The whole verification environment is based on the functional verification tools developed by
Cadence.

Figure 2-4 shows the list of tests implemented (right column) and the DDCM functionalities
verified by each of them (left column). Notice that these tests are the same used to verify the
DDCM with electrical PHY; this matches the philosophy that the PHY implements simply the
physical layer of the communication irrespective of the overall system architecture.

Figure 2-4: DDCM test list

2.3 Synthesis environment
The synthesis environment consists of the directory synth.
This in turn contains the following subdirectories:

• input containing the configured VHDL code for a specific DDCM implementation;

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 22/04/2014
NAVOLCHI – D5.6 Version 1

Confidential document – page 10

• scripts containing the commands for the synthesis tool;
• run, the directory where the synthesis tool is invoked and log files are recorded;
• reports containing the characterization of the synthesized design in terms of area, timing

(speed) and power consumption
• output containing the synthesized DDCM design in terms of Front-End netlist.

The generic DDCM synthesis environment is fully based on Synopsys tools, i.e. Design
Compiler as synthesis engine and Design Vision as interactive GUI.

Figure 2-5: Synthesis flow based on Synopsys Design Compiler

The synthesis design phase is strongly technology dependent, since the results of the synthesis
process, i.e. the gate level netlist, is an assembly of technological standard cells implementing
the structure and the functionality of the DDCM in the required technology.
Also the version the DDCM supporting a plasmonics-based PHY has been synthesized using
65nm and 40nm CMOS technologies. Of course no synthesis activities have been carried out for
the analog parts and for the plasmonic devices composing the plasmonics-based PHY, since a
specific full custom design is required for them.

Based on the Synthesis environment, a flow for the characterization of the digital parts of the
DDCM in terms of power consumption has been developed, as shown in figure 2-6.
According to this flow a specific configuration of the DDCM is simulated many times, and for
each simulation the switching activity at each node and across each wire of the design is
recorded; then this switching activity is back-annotated on the netlist in Design Compiler
environment, and the power analysis tool is invoked so to calculate the power consumed by the
DDCM block taking into account the switching activity determined by the traffic injected in
different scenarios.
Relying on the obtained data, average and peak power consumption is determined. However the
contribution of the digital parts to the power consumption of the overall system is negligible,
since the highest contribution is expected to come from the plasmonic components.

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 22/04/2014
NAVOLCHI – D5.6 Version 1

Confidential document – page 11

Figure 2-6: Power consumption characterization flow

FP7-ICT-2011-7 Deliverable Report
Project-No. 288869 Last update 22/04/2014
NAVOLCHI – D5.6 Version 1

Confidential document – page 12

3. Conclusion
This document describes the generic DDCM supporting a plasmonics-based PHY design and
verification data base (deliverable D5.6) where the generic DDCM block is implemented and
functionally verified according to its functional specification (deliverable D5.4).

