

Nano Scale Disruptive Silicon-Plasmonic Platform for Chipto-Chip Interconnection

Grown wafer structure for plasmonic lasers

	31/10/2012
Actual Submission date:	
Authors:	Victor Calzadilla, TU/e
	Meint Smit, TU/e
Work package(s):	WP3
Distribution level:	RE ¹ (NAVOLCHI Consortium)
Nature:	document, available online in the restricted area
	of the NAVOLCHI webpage

List of Partners concerned

Partner	Partner name	Partner	Country	Date	Date
number		short		enter	exit
		name		project	project
1	Karlsruher Institut für Technologie	KIT	Germany	M1	M36
2	INTERUNIVERSITAIR MICRO-	IMCV	Belgium	M1	M36
-	ELECTRONICA CENTRUM VZW	nuie v	Deigium		
3	TECHNISCHE UNIVERSITEIT	TU/e	Netherlands	M1	M36
5	EINDHOVEN	10/0	recificitatios		
	RESEARCH AND EDUCATION			M1	M36
4	LABORATORY IN INFORMATION	AIT	Greece		
	TECHNOLOGIES				
5	UNIVERSITAT DE VALENCIA	UVEG	Spain	M1	M36
6	STMICROELECTRONICS SRL	ST	Italy	M1	M36
7	UNIVERSITEIT GENT	UGent	Belgium	M1	M36

 $[\]mathbf{PU} = \mathbf{Public}$

1

PP = Restricted to other programme participants (including the Commission Services)

RE = Restricted to a group specified by the consortium (including the Commission Services)

CO = Confidential, only for members of the consortium (including the Commission Services)

FP7-ICT-2011-7 Project-No. **288869** NAVOLCHI – MX.X

Milestone Report Last update 07/11/2012 Version 1

Deliverable Responsible

Organization:	Eindhoven University of Technology
Contact Person:	Victor Calzadilla
Address:	Faculty of Electrical Engineering
	P.O. Box 513
	5600 MB Eindhoven
	The Netherlands
Phone:	+31 (0) 40247 5129
E-mail:	v.calzadilla@tue.nl

Executive Summary

This report describes the characteristics of the InP-based wafer grown at TU/e, which enables us to start the fabrication of the plasmonic/metallo-dielectric laser. Its growth has been carried out with MOVPE (Metalorganic Vapour Phase Epitaxy). Prior to its growth, the definition of the layerstack was defined based on the devices to fabricate.

Change Records

Version	Date	Changes	Author
1 (submission)	2012-07-11		V. Calzadilla, M. Smit

FP7-ICT-2011-7 Project-No. **288869** NAVOLCHI – MX.X

Characteristics of wafer

After the definition of the laser devices reported in deliverable 3.1, the layerstack has been defined in ordert to grow the wafers required for the fabrication. Figure 1 shows the characteristics (material, thicknesses and doping levels) of the wafer that has been grown in the clean room facilities of TU/e.

Color code	Material	Thickness [nm]	Doping	
	InP	50	N > 5x10 ¹⁸	
	InGaAs	50	N > 1x10 ¹⁹	
	InP	100	N > 5x10 ¹⁸	
	InP	100	N = 5x10 ¹⁸	
	InP	100	N = 1x10 ¹⁸	
	InGaAs	350	n.i.d.	
	InP	100	$P = 3x10^{17}$	
	InP	100	$P = 5x10^{17}$	
	InP	50	$P = 1 \times 10^{18}$	
	Q 1.25	50	$P = 2.4 \times 10^{19}$	
	InP	100	$P = 1x10^{18}$	
	InP	100		
	InP	Substrate	n.i.d.	

Figure 1. Layerstack of grown wafer on a non-intentionally-doped (n.i.d.) InP substrate. The bottom layer describes the substrate, whereas the top layer is a protection layer that has to be removed before the actual processing of the wafer.

A single wafer with the aforementioned characteristics has been grown in order to start experimental activities. A number of wafers will be required for the development of the fabrication process for the laser. Subsequent wafers, possibly with a modified layer structure, will be ordered when needed..