

Nano Scale Disruptive Silicon-Plasmonic Platform for Chipto-Chip Interconnection

Decision on an optimized structure for plasmonic modulator with a maximum loss of 20dB

Milestone no.:	MS12
Due date:	30/04/2013
Actual Submission date:	21/06/2013
Authors:	KIT
Work package(s):	WP3
Distribution level:	RE ¹ (NAVOLCHI Consortium)
Nature:	document, available online in the restricted area
	of the NAVOLCHI webpage

List of Partners concerned

Partner	Partner name	Partner	Country	Date	Date
number		short		enter	exit
		name		project	project
1	Karlsruher Institut für Technologie	KIT	Germany	M1	M36
2	INTERUNIVERSITAIR MICRO- ELECTRONICA CENTRUM VZW	IMCV	Belgium	M1	M36
3	TECHNISCHE UNIVERSITEIT EINDHOVEN	TU/e	Netherlands	M1	M36
4	RESEARCH AND EDUCATION LABORATORY IN INFORMATION TECHNOLOGIES	AIT	Greece	M1	M36
5	UNIVERSITAT DE VALENCIA	UVEG	Spain	M1	M36
6	STMICROELECTRONICS SRL	ST	Italy	M1	M36
7	UNIVERSITEIT GENT	UGent	Belgium	M1	M36

 $[\]mathbf{PU} = \mathbf{Public}$

1

PP = Restricted to other programme participants (including the Commission Services)

RE = Restricted to a group specified by the consortium (including the Commission Services)

CO = Confidential, only for members of the consortium (including the Commission Services)

FP7-ICT-2011-7 Project-No. 288869 NAVOLCHI – MS12

Deliverable Responsible

Organization:	Karlsruhe Institute of Technology	
Contact Person:	Martin Sommer	
Address:	Institute of Microstructure Technology	
	Hermann-von-Helmholtz-Platz 1, Building 321	
	76344 Eggenstein-Leopoldshafen	
	Germany	
Phone:	+49 (0)721 - 608 22664	
Fax:	+49 (0)721 - 608 26667	
E-mail:	martin.sommer@kit.edu	

Executive Summary

This document shall incorporate (all) rules procedures concerning the technical and administrative management of the project and is therefore to be updated on a regular basis. Please look at <u>www.navolchi.eu</u> regularly for the latest version.

Change Records

Version	Date	Changes	Author
0.1 (draft)	2013-06-21	Start	Argishti Melikyan
1 (submission)	2013-06-21		Argishti Melikyan

Surface plasmon polariton absorption modulator

We have studied both phase and absorption plasmonic modulators in the Deliverable D3.2. Based on the results presented there, we have decided to focus on the phase modulator, and the decision is discussed in Milestone MS9.

However, it has been experimentally shown by the group in UC Berkeley [1] that the absorption modulator employing a plasma dispersion effect in the indium tin oxide(ITO) layer in reality provides much better performance than what the models predict [2-3]. Therefore, we have decided to fabricate and test surface plasmon polariton absorption modulators in the configuration given in Fig. 1(a). Device length L_{1dB} providing 1 dB extinction ratio for 4.5 V_{pp} driving voltage as a function of insulator thickness *d* is given in the Fig. 1(b). In addition, the insertion loss in the device is given in red.

Figure 1 Surface plasmon polariton absorption modulator (SPPAM). (a) Cross section of the SPPAM, (b) device length and insertion loss as a function of insulator thickness d. H_{Si} and h are assumed to be 220nm and 5nm respectively.

In order to keep the total insertion loss of the final device below 20 dB we have decided to focus on the structure which has maximum 15 dB intrinsic losses. Additional losses are expected from photonic - plasmonic interface. The targeted values of the geometrical parameters are listed below:

Parameter name	Value
$H_{ m Si}$	220nm, 340nm
d	< 13nm
h	5nm, 7.5nm

- [1] V. J. Sorger, N. D. Lanzillotti-Kimura, R.-M. Ma, and X. Zhang, "Ultra-compact silicon nanophotonic modulator with broadband response," Nanophotonics 1, 17–22 (2012).
- [2] A. Melikyan, N. Lindenmann, S. Walheim, P. M. Leufke, S. Ulrich, J. Ye, P. Vincze, H. Hahn, Th. Schimmel, C. Koos, W. Freude, and J. Leuthold, "Surface plasmon polariton absorption modulator," Opt. Express 19, 8855-8869 (2011).
- [3] A. V. Krasavin and A. V. Zayats, "Photonic Signal Processing on Electronic Scales: Electro-Optical Field-Effect Nanoplasmonic Modulator," Phys. Rev. Lett. **109**, 053901 (2012).