

PHOTONICS RESEARCH GROUP

IMEC in Navolchi

Warwick Meeting July 2012

imec in NAVOLCHI

WP3 – transmitter

- Provide bonding to TU/e
- Provide passive silicon circuits through <u>http://epixfab.eu/</u> platform

WP4 – amplifier for receiver

- Design and fabricate amplifier on silicon platform using UGent QDOTS
- Investigate possibilities for electrical injection

WP5 – interfaces

- WP-leader
- Design and fabricate passive filter for amplifier noise suppression
- Design and fabricate optical beam-steerer

WP4 - work

Objective: design and fabrication of QDOT amplifier

- Integrated with silicon waveguides
- Electrical injection

Timeline:

- Month 12 (M4.1) : decision on design
- Month 15 (M4.3) : conductive QD layers
- Month 18 (M4.6) : electroluminescence from QD-stack
- Month 21 (M4.8) : optically pumped amplifier (10dB gain)
- Month 30 (M4.9): electrical pumped amplifier 10dB/cm gain

Main input required: UGent QDOTS

Integrated light source for silicon photonics

Metal oxides for charge transport

Considerable effort in optimizing injection layers

ZnO (electrode transport layer) NiOx/CuOx (hole transport layer)

Characterisation material properties in terms of depositon paramters

Conductivity, optical losses, grain size ...

BUT: Could not reproduce initial electro-luminescence success

(Possible side project: AZO as replacement for ITO in modulator?)

Alternative for current injection: AC-stack

Originally proposed by V. Wood (ETHZ)

AC s

Demonstrated both in visible and NIR

PHOTONICS RESEARCH GROUP

ē

100

50 -

Power vs. Voltage/Frequency

First attempt at integrating with silicon waveguide

PHOTONICS RESEARCH GROUP

First attempt at integrating with silicon waveguide

PHOTONICS RESEARCH GROUP

imec 13

WP5 - work

Passive filter:

- 1st gen: 3nm bandwidth, 10dB suppression, 30nm FSR
- options: ring resonator, AWG, PCG ...

Beam steerer:

- 1st gen: 5dB loss, 100um distance
- 2nd gen: 3dB loss, 1mm distance, 10nm bandwidth
- "Challenging"

Time line:

UGENT

- 1st gen: Design (month 12, M5.3) \rightarrow Fabrication (month 18, M5.7) \rightarrow characterisation (month 21, D5.3)
- 2^{nd} gen: Design (month 24, M5.9) \rightarrow Fabrication (month 30, M5.11) \rightarrow Characterisation (month 33, D5.7)

Sukumar Rudra

Passive filter

AWG based version

Device Details:

10x400 GHz AWG - size: 370x330 um2 - design FSR = 42 nm

Measurement details:

Insertion Loss: -.90dB non_uniformity: 0.8 dB Crosstalk: 22 dB 1dB Bandwidth: 1.01 nm - 3dB Bandwidth: 1.75 nm - 10dB Bandwidth: 3.19 nm

PHOTONICS RESEARCH GROUP

Passive filters

-25

1,500

1,510

1,520

Wavelength in nm

1,530

MIL MIL

1,540

Passive filters

Alternative design: use ring based filters

Large FSR \rightarrow small radius

Range of parameters:

R = 2um, Lc = [0,2,5]um, FSR = [47, 36,26.6] nm R = 3um, Lc = [0,2,5]um, FSR = [31.8,26.2,20] nm

Beam steerers

Use movable gratings ?

To be combined with focusing grating

Beam steering

Proposed structure: grating coupler on movable MEMS platform

3 electrodes allow applying force in 3 directions

Back pad actuation

Beam steering

Processing:

Underetching initially not controllable – currently OK

Fiber Characterisation:

Change in power + central wavelength measured when applying voltage Device dependent (sometimes increase, sometimes decrease) Change not in line with predictions

imec

19

Beam steering

Measurements using Laser Doppler Vibrometry

Gives image of displacement

No difference seen between side and back pad actuation

Always tilt to front – Discrepancy with fiber based measurements

Next step

Reprocessing current samples

Designed new version with simpler structure

PHOTONICS RESEARCH GROUP