

Physics and chemistry of nanostructures

Progress Navolchi project April 26th, 2012

Prof. Zeger Hens Ghent University Belgium

Physics and Chemistry of Nanostructures Group

• People

- Processing
- Properties
- Devices
 - Absorbance of functionalized waveguides
- Planning of future work

- InP/CdS
 - Why?
 - Type 2 heterostructure with emission wavelength > 1000 nm
 - Challenges
 - CdS shell growth seems difficult according to literature
 - Based on bulk band alignment, 1500 nm is within reach, yet no experimental evidence in literature so far
 - **Current activities**
 - Establish state-of-the-art InP synthesis @ Ugent
 - Push core synthesis to larger diameters
 - Develop reliable shell growth procedure

- InP/CdS baseline synthesis
 - Variation on published hot injection approach

OTOTION DIA ALANA	7
Synthesis conditions	
Precursors	P(TMS) ₃ and In(MA) ₃
In:P:Octylamine:Myristic Acid	2:1:11: <i>x</i>
Injection Temp.	188 °C
Growth Temp.	178 °C
Reaction time	30 min

CH₃ H₃C-Si-CH₃

H CH3

ĊH₃

Si-CH₃

H₃C

CH₃ 7

H₃C-Śi

R. Xie, D. Battaglia and X. Peng; J. Am. Chem. Soc. 2007; 129; 15432-15433

0

Q- In³⁺ Q

- InP/CdS baseline synthesis
 - Typical result:

In : P: octylamine : MA = 0.4 : 0.2 : 2.2 : 1.70

R. Xie, D. Battaglia and X. Peng; J. Am. Chem. Soc. 2007; 129; 15432-15433

- InP/CdS baseline synthesis
 - Size tuning via myristic acid concentration:

Required starting point to push InP/CdS core/shell QDs towards 1300 and 1500 nm

R. Xie, D. Battaglia and X. Peng; J. Am. Chem. Soc. 2007; 129; 15432-15433

- HgTe baseline synthetis (under development)
 - Variation on published hot injection approach

	ſ
HgCl ₂ and TOP-Te	5
1:1:11: <i>x</i>	
60 °C	
о°С	
15 min	
- 1 5	IgCl ₂ and TOP-Te :1:11: <i>x</i> :0 °C :0 °C 5 min

Keuleyan et al., J. Am. Chem. Soc. 2011; 133; 16422-16424

- HgTe baseline synthetis
 - Initial result:

R. Xie, D. Battaglia and X. Peng; J. Am. Chem. Soc. 2007; 129; 15432-15433

Future work

- InP
 - Further push core synthesis to larger sizes
 - Development of CdS shell growth procedure
 - Optical characterization
- HgTe
 - Enhance size dispersion
 - Optimize size control in the required wavelength range
 - Optical characterization

