



#### Unit of Materials and Optoelectronic Devices



University of Valencia www.uv.es/umdo



#### I. Suárez, P.J. Rodríguez-Cantó and J.P. Martínez-Pastor

Current State of the work Eindhoven January 28<sup>th</sup> 2014



## Outline

#### **1-Current Status of the work**

- 1.1-Plasmonic amplifiers by using polymers doped with QDs
- 1.2-Photodetectors based on QDs and polymers

#### **2- Next steps and collaborations with other partners**

#### **3-Reports**

- 3.1-Deliverables
- 3.2-Milestones
- 3.3-Dissemination



#### **Previous** (to the review meeting in Brusels)

- Design of plasmonic amplifiers
- Active properties of CdSe QDs, PbS QRs

#### Last months

- HgTe as an active material
- 2D plasmonic waveguides
- Propagation length in plasmonic waveguides



# **Active HgTe waveguides**



Filling factor (*ff*) implies a trade-off between absorption losses and generated photoluminescence (**PL**)

Pump from the surface



This configuration can solve this trade-off by finding optimal thicknesses

→ High amount of waveguided PL
→ not net amplification yet



## **Active HgTe waveguides**



0.8

0.9

Energy (eV)

1.0

1 1





 $\alpha$ ~20 cm<sup>-1</sup>



## **2D Plasmonic waveguides**



Au stripes (~10 μm) by UV lift-off process
Covered by active material

#### Near field characterization:

- 1) Photonic TE mode on the dielectric
- 2) Photonic TE mode on the metal
  - 1) Photonic TM mode on the dielectric
  - 2) Plasmonic TM mode on the metal



### Plasmonic waveguides

#### Method to characterize Propagation length:



LR-SPP  $L_p=12.5 \ \mu m$ , close to the theoretical (11  $\mu m$ )



### **Photodetectors**

### **Milestone 23**

Current tasks:

- Enhancement of Responsivity at near-IR of QD-Schottky PD
- Nanogap design under fabrication.

and Voc 10x more at 820 nm.

Photomask for fabricating microgap contacts ordered.



Before (spin-coating) I(V) curves dark PD - Schottky 2 560 nm  $P_{i} = 4.4 \, \mu W$ (hJ) R= 0.7 A/W Dr. Blade deposition is being used for 200--2 810 nm 500 nm thickness of layers, but still needing further work for optimization. R= 0.003 A/W Better results are obtained: larger 0.01 0.00 resistivity layers and hence lower reverse Bias (V) bias losses in Schottky diodes. Responsivity



### **Photodetectors**

### **Milestone 23**

Current tasks:

- Enhancement of Responsivity at near-IR of QD-Schottky PD
- Nanogap design under fabrication.
- Photomask for fabricating microgap contacts ordered.



- Dr. Blade deposition is being used for 200-500 nm thickness of layers, but still needing further work for optimization.
- Better results are obtained: larger resistivity layers and hence lower reverse bias losses in Schottky diodes. Responsivity and Voc 10x more at 820 nm.





# Gain in HgTe QDs

- Improve excitation
- Report sent to to UGENT  $\rightarrow$  New samples from UGENT

# Plasmonic waveguides

- Propagation length in optimized structures (1D or 2D)
- Set-up to include pumping
- Samples with HgTe QDs

### **Photodetector**

- Nanogap $\rightarrow$  In contact with Victor

| Air                       |                |  |
|---------------------------|----------------|--|
| РММА                      | d <sub>3</sub> |  |
| QD-PMMA                   | d <sub>1</sub> |  |
| Au                        | ‡ t            |  |
| РММА                      | d <sub>2</sub> |  |
| <b>SiO</b> <sub>2</sub> 2 | μm             |  |
| Silicon                   |                |  |



## **Deliverables and Milestones**

|             | Names of the Milestones                                                                              | Month | Partner |
|-------------|------------------------------------------------------------------------------------------------------|-------|---------|
| MS16        | Decision on optimized structures for plasmonic amplifiers                                            | 12    | UVEG    |
| MS17        | Synthesis of nanoparticles with gain at 1550nm                                                       | 12    | UGENT   |
| <b>MS18</b> | Demonstration of conductive QD layers with photoconductive properties                                | 15    | UVEG    |
| MS19        | Demonstration of metal-(lithographic) polymer and QD metal-(lithographic) polymer nanocompo-sites    | 15    | UVEG    |
| MS20        | Demonstration and decision on photodetector operation: nano-gap (MIM) vs. Schottky / heterostructure | 18    | UVEG    |
| MS22        | Demonstration of plasmonic amplifiers with optical pumping<br>exhibiting 10 dB gain                  | 21    | IMEC    |
| <b>MS23</b> | Operation of QD based photodetector with responsivity > 0.1 A/W                                      | 24    | UVEG    |
| MS24        | Demonstration of SPP amplifiers with electrical injection exhibiting<br>10dB/cm gain                 | 30    | UVEG    |



|       | Names of the Deliverables                                             | Month | Partner |
|-------|-----------------------------------------------------------------------|-------|---------|
| D4.1  | Designs of plasmonic amplifiers                                       | 18    | UVEG    |
| D4.2  | Report on optical properties of QDs layers and polymer nanocomposites | 18    | UVEG    |
| D4.3  | Designs of plasmonic photodetectors                                   | 24    | UVEG    |
| D4.4  | Report on SPP amplifiers by using QDs                                 | 30    | IMEC    |
| D4.5  | Report on plasmonic photodetectors                                    | 33    | UVEG    |
| D.7.1 | First report on NAVOLCHI dissemination and promotion activities       | 18    | AIT     |
| D.7.2 | First report on NAVOLCHI exploitation activities                      | 18    | AIT     |



### Dissemination

- Invited talk at ICTON: Will there be Navolchi session?