Project Meeting Eindhoven

Victor Calzadilla, Dominik Heiss Andrea Fiore, Meint Smit

28-01-2014

Technische Universiteit **Eindhoven** University of Technology

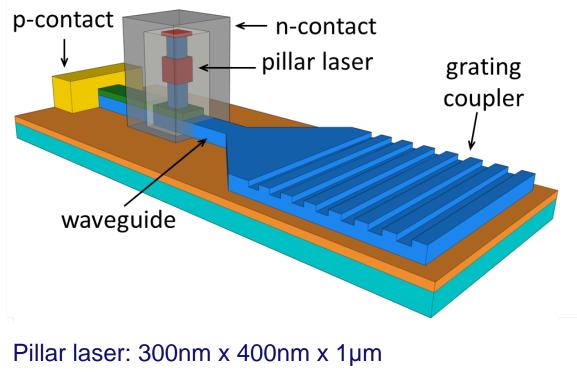
Where innovation starts

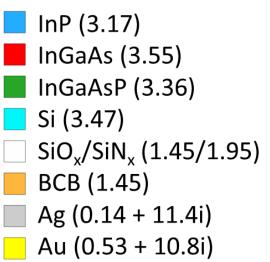
Contents

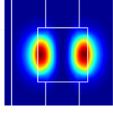
1. Tasks

- 2. Milestones and deliverables
- 3. Current status of nanolaser
 - Summary of simulation results
 - Results of 1st fabrication run
 - Plan for 2nd run
- 4. Cooperation with other partners
- 5. Conclusions

	Names of the tasks	Time period [months]
Task 3.1	Modelling of device structure (plasmonic laser) and optimization of bonding technology	1 – 6
Task 3.3	Fabrication of nano plasmonic laser	7 – 30

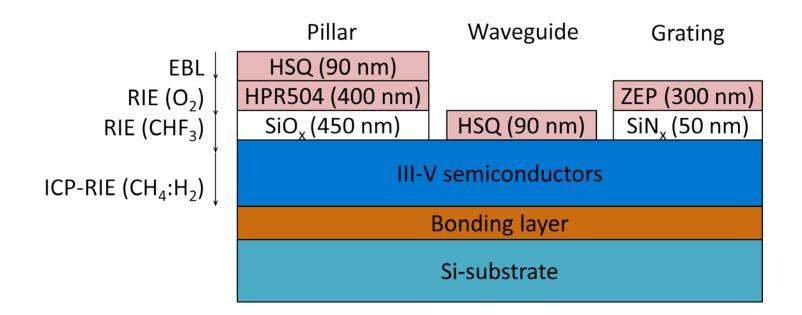

	Names of the milestones	Month
MS8	Decision on an optimized structure for metallic/plasmonic nanolaser and its coupling to a Si- waveguide	6
MS10	Grown wafer structure for plasmonic lasers	12
*MS13	Initial characterization of unbonded plasmonic lasers	18
MS15	Initial testing of bonded plasmonic lasers	24
	Names of the deliverables	Month
D3.1	Report on studies of optimized structure for metallic/plasmonic nanolaser and its coupling to Si- waveguide	12
D3.3	Fabrication of plasmonic laser device	24

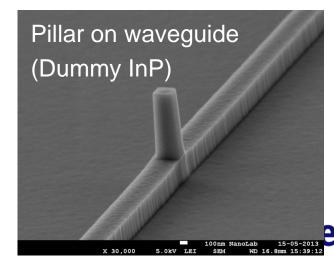

*MS13: has become obsolete by modification of fabrication process



Laser structure

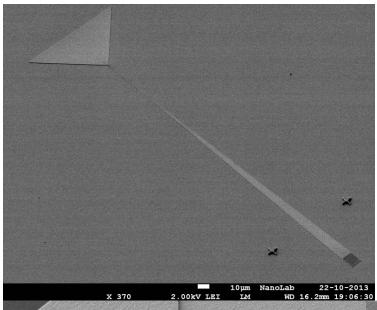
TE mode


5/14


Main simulation results

- Optical simulations
 - Q ~ 530
 - Threshold gain ~ 800 cm⁻¹
- Electrical simulations
 - Threshold current ~ 120 µA
 - Differential efficiency ~ 0.16
 - Output power (estimated) ~ 40 μ W @ 420 μ A (2V)

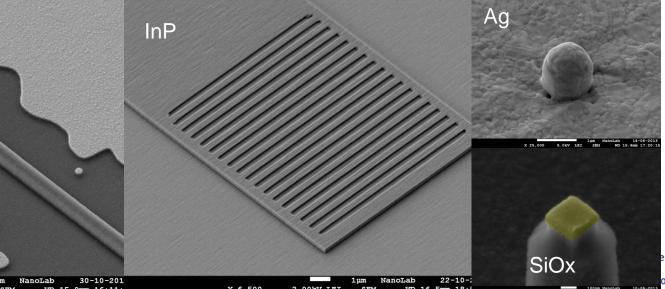
Fabrication technology development



Technische Universiteit **Eindhoven** University of Technology

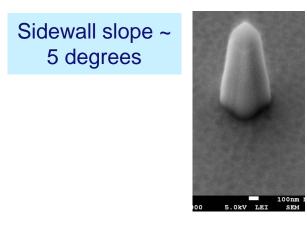
7/14

1st run: main achievements



Ti/Au

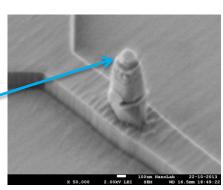
X 9,000


- Integration of EBL and optical lithography steps in InP-membrane processing
- Creation of metallic adhesion pads
- Resist planarization and contacts deposition

\checkmark ~80% of processing with no problems

1st run: main issues and solutions

• Non-vertical etch of bonded samples (probably due to BCB)

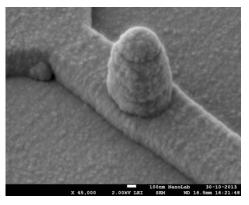


Possible solution by recipe tuning, for example:

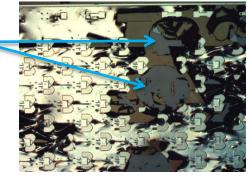
- Lower pressure
- Lower RF power

Unprotected pillar due to mask erosion

Top of pillar was etched


Additional lithography step to protect pillar with photoresist

1st run: main issues and solutions


Low quality of SiO₂

• Outgasing (BCB?) during silver annealing (>400C)

Round defects

One device:

- Modify PECVD recipe

- Reduce annealing temperature
- Cure BCB at higher temperature during bonding process

Use fresh Degussa

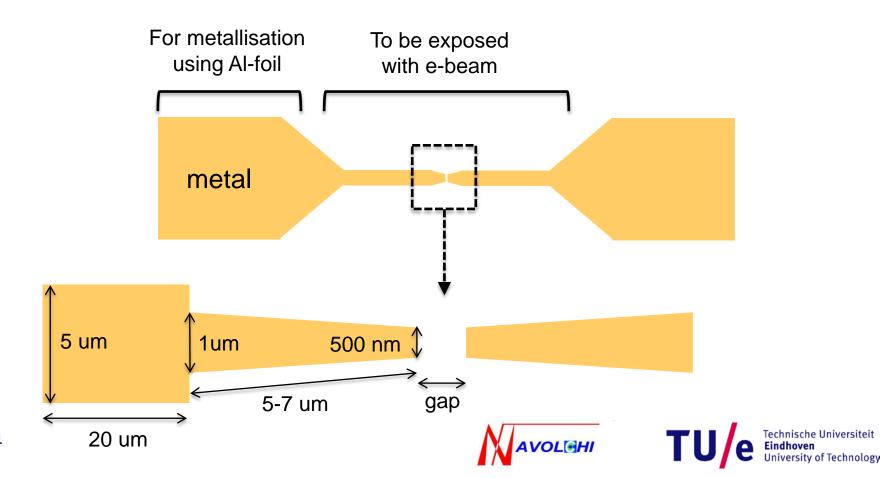
e Universiteit

of Technology

Annealed silver was not etched with Degussa (KCN)

Plan for 2nd run

- Technology development
 - Work on 1st run issues
 - Time: ~ 2 months
- Lasers fabrication
 - Contents: wafer growth, wafer bonding, fabrication run
 - Time: ~ 2 months
- Characterization (if run is successful)
 - Time: ~ 1-2 month


Other technical issues regarding the laser

- No growth of n-InGaAs is possible in our cleanroom at the moment
- Dicing of bonded samples
 - Could IMEC do dicing tests of bonded samples?
 - Is it better to do bonding on thin Si-wafers?
- New wafer bondings from UGhent will be required

Cooperation with UVEG

- Fabrication of nanogap at TUe for plasmonic detector
 - Thickness: 100 nm thick Au, gap: 50-100 nm
 - Separation distance?

Conclusions

- Milestones and deliverables: 1M and 1D are delayed
- Plan for next months:
 - Work on technology issues identified in 1st run
 - Do a second run of lasers
 - Fabricate nanogaps for Valencia

