Photonics Research Group

Navolchi Update January 2014

Overview of activities

Outline

- (almost) Published results
- Ongoing work - light amplification by HgTe quantum dots

Рноtonics Research Group

Published Results

Nanocrystal synthesis

- PbS/CdS dot-in-rods

$\mathbf{J}|\mathbf{A}| \mathbf{C} \mid \mathbf{S}$

Multiple Dot-in-Rod PbS/CdS Heterostructures with High Photoluminescence Quantum Yield in the Near-Infrared

${ }^{\dagger}$ Physics and Chemistry of Nanostructures, ${ }^{\ddagger}$ Center for Nano and Biophotonics, and ${ }^{8}$ Photonics Research Group, Ghent University, B-9000 Gent, Belgium
${ }^{1}$ EMAT, University of Antwerp, B-2020 Antwerp, Belgium
Justo et al., J. Am. Chem. Soc. 2012, 134, 5484

- HgTe QD synthesis

Study ongoing on size tuning by reaction kinetics in $1000-2000 \mathrm{~nm}$ range

Published Results

Nanocrystal processing

Micropatterning of Layers of Colloidal Quantum Dots with

Inorganic Ligands Using Selective Wet Etching

Chen et al., Nanotechnology, revised version submitted

Published Results

Nanocrystal properties

Broadband and Picosecond Intraband Absorption in Lead-Based Colloidal Quantum Dots

 Juleon M. Schins, ${ }^{\text {t }}$ Dries Van Thourhout, ${ }^{\text {t/ }}$ Christophe Delerue, ${ }^{5}$ Laurens D. A. Siebbeles, ${ }^{\text { }}$ and Zeger Hens ${ }^{1.5, *}$

ABSTRACT

De Geyter et al., ACS Nano 2012, 6, 6067

Optical Properties of PbS/CdS Core/Shell Quantum Dots
Yolanda Justo,**, ${ }^{\dagger}$ Pieter Geiregat, ${ }^{\dagger,+, \|}$ Karen Van Hoecke, ${ }^{\mathbb{I}}$ Frank Vanhaecke, ${ }^{\text {II }}$ Celso De Mello Donega, ${ }^{\S}$ and Zeger Hens***, ${ }^{*}$

Hens et al., J. Phys. Chem. C 2013, 117, 20171

Рhotonics Research Group

Published Results

Nanocrystal properties

Giant and Broad-Band Absorption Enhancement in Colloidal Quantum Dot Monolayers through Dipolar Coupling

Pieter Geiregat, ${ }^{t, t, 5}$ Yolanda Justo, ${ }^{t, 5}$ Sofie Abe, ${ }^{t, 5}$ Stijn Flamee, ${ }^{\text {t,5 }}$ and Zeger Hens ${ }^{\text {t,5.* }}$

Geiregat et al., ACS Nano 2013, 7, 987

Published Results

Quantum-dot based devices

Light absorption in hybrid silicon-on-insulator/quantum dot waveguides

Abdoulghafar Omari, ${ }^{1,2,3, *}$, Pieter Geiregat, ${ }^{1,2,3}$, Dries Van
Thourhout, ${ }^{2,3}$ and Zeger Hens, ${ }^{1,2}$

Omari et al., Opt. Exp. 2013, 21, 23272

JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONCS, JUIY/AUGUST 2014
Modeling the optical properties of low-cost colloidal quantum dot functionalized strip SOI waveguides

Abdoulghafar Omari, Member, IEEE, Weiqiang Xie, Pieter Geiregat, Member, IEEE, Dries Van Thourhout, Member, IEEE, and Zeger Hens

Omari et al., J. Sel. Top. Quant. Elec. 2014, accepted

Photonics Research Group

HgTe Quantum Dots

Properties

Experimental data

a

Energy levels

Absorption spectrum

Рноtonics Research Group

HgTe Quantum Dots

- Overview $\Delta \alpha$ hyperspectrum

(b)

- bieacn от Danagap transition
- 500-1000 ps dynamics due to hole thermalization

HgTe Quantum Dots

- Amplification - low fluence

C
d

- Gain feature develops at red side of bandgap for $\langle\boldsymbol{N}\rangle<\mathbf{0 . 0 1}$
- Gain feature long-lived (not capped by Auger processes)

HgTe Quantum Dots

On the origin of the optical gain in HgTe QDs

(a)

(c)

- Gain at long wavelength side of bandgap absorption
- No fingerprint of hole relaxation on gain dynamics
- Gain cross section increases with QD purification Gain ~ transition from CB to empty surface state

HgTe Quantum Dots

Amplification high fluence

- Second gain band, capped by Auger recombination
- At long delay - only red side (trap related) persists
- With increasing fluence, amplification is lost (charged QDs?)

Outlook

- Extend analysis to HgTe QD films
- On dropcast films - gain signal is not preserved (trap absorption observed instead)
- Dilution in polymer as the next step

Рhotonics Research Group

