NAVOLCHI 3rd Review Meeting

November 5th 2014, Brussels

FP7-ICT-2011-7 GA 288869

Work Package 6: Integration, Characterization & Testing "Project NAVOLCHI" <u>Claudia Hoessbacher</u>, Juerg Leuthold ETH Zurich, Switzerland

Nano Scale Disruptive Silicon-Plasmonic Platform for Chip-to-Chip Interconnection

www.navolchi.eu

Outline

- **1. WP6 Position in Project**
- 2. Objectives
- 3. Tasks
- 4. Milestones and Deliverables
- 5. Status of Work

Task 6.1 Characterization of active and passive plasmonic devices

Task 6.2 Assembly and packaging of plasmonic devices into System in Package

Interconnect System – Contincengy Plan

6. Summary and Outlook

WP6 Position in Project

Nano Scale Disruptive Silicon-Plasmonic Platform for Chip-to-Chip Interconnection

VOLIHI

Objectives

- Characterization and testing of active and passive plasmonic devices
- Integration of plasmonic devices with the electrical parts the chip-to-chip communication structure is composed of
- Characterization and testing of a complete System in Package

Tasks

	Names of the Tasks	Time Period [months]
Task 6.1	Characterization of active and passive plasmonic devices	7 – 33
Task 6.2	Assembly and packaging of plasmonic devices into System in Package	30 – 36
Task 6.3	Plasmonic chip to chip interconnect prototype testing and evaluation	32 – 36 → 45
Task 6.4	System-in-Package integration and characterization	22 – 36 → 45

Milestones

	Names of the Milestones	Month	Partner
MS37	Plasmonic active device characterization results	12	KIT
MS38	Plasmonic passive components characterization results with a 1dB coupling loss	24	KIT
MS39	Concept for system integration developed	27	AIT
MS40	Individual plasmonic devices characteriaztion, testing and evaluation	30 → 39	TU/e
MS41	Chip to chip interconnect characterization	33 → 42	ST
MS42	Plasmonic components integration to demonstrate chip-to-chip interconnect	33 → 42	AIT
MS43	Plasmonic chip to chip interconnect prototype testing and evaluation	36 → 45	ST

Deliverables

	Names of the Deliverables	Month	Partner
D6.1	Report on characterization results of all plasmonic devices	(27) 36	TU/e
D6.2	Report on characterization results of all optical interface plasmonic passive components	(27) 36	KIT
D6.3	Report on chip to chip interconnect characterization	36 → 45	ETH
D6.4	Report on plasmonic chip-to-chip interconnect prototype testing and evaluation	36 → 45	AIT

WP6: Assembly to Plasmonic Chip-to-Chip Interconnect Array

Task 6.1 Characterization of Active and
Passive Plasmonic Devices

Laser

- Fabrication process of III-V
 laser on silicon fully developd
- Characterization beginning of next year

Mach-Zehnder Modulator

- Data rates: 40 Gbit/s (BER 6x10⁻⁴)
- Energy consumption: 75...225 fJ/bit
- Device length: 29 µm
- Loss: 12 dB

Task 6.1 Characterization of Active and
Passive Plasmonic Devices

Amplifier

 @1550 nm: compensation of losses, no gain yet

OLOHI

 Outlook: gain by using HgTe QDs in dielectric matrix

Photodetector

- Schottky:
 - Responsivity: 0.1-0.3 A/W
 - Speed limited
- Outlook: Nano-gap PDs

Task 6.2 Assembly and Packaging of Plasmonic Devices into System in Package

OLOHI

Task 6.2 Assembly and Packaging of Plasmonic Devices into System in Package

2D in-plane packaging

Commercial fiber arrays (Chiral Photonics)

Advantages

OLOHI

- 4 channels with 50 µm pitch
- Interchannel coupling <-35 dB
- No additional fabrication steps
- Allows for additional optical amplifier

[1] V. I. Kopp, J. Park, M. S. Wlodawski, E. Hubner, J. Singer, D. Neugroschl, et al., Two-dimensional, 37channel, high-bandwidth, ultra-dense silicon photonics optical interface, 2014.

Interconnect System – Contingency Plan

Receiver

Transmitter

Nano Scale Disruptive Silicon-Plasmonic Platform for Chip-to-Chip Interconnection

Interconnect System – Contingency Plan

System Level Specifications Transmitter

- 4 optical channels with 50 μm pitch (modulator length: 29 μm)
- Data rate: 40 Gbit/s
- Optical bandwidth: 120 nm
- Energy consumption modulator: 75 fJ/bit
- Insertion loss: 12 dB

AVOL®HI -

Interconnect System – Contingency Plan

Timeline

Summary and Outlook

- Summary
 - Progress in characterization of active and passive plasmonic devices
 - Integration of plasmonic devices with the electrical parts started
- Outlook
 - Complete integration of plasmonic devices with the electrical parts
 - Characterization and testing of a complete System in Package

