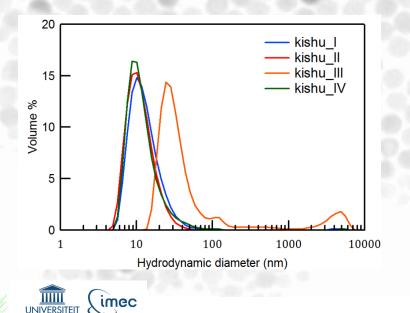


PHOTONICS RESEARCH GROUP

Navolchi Update December 2013

Physics and Chemistry of Nanostructures Group

http://www.nano.UGent.be


Overview of activities

- HgTe quantum dots
- Absorbance of QD coated waveguides

HgTe Quantum Dots

- Aggregation/dispersion stability
 - Problem addressed by addition of polystyrene as a stabilizing polymer to the synthesis
 - Does not influence synthesis outcome
 - Prevents aggregation of HgTe nanocrystals



PHOTONICS RESEARCH GROUP

- I,II,IV PS addition before the synthesis (I and II: amount of PS is varied; IV: different size)
- III PS addition after the synthesis (I to III emitt at same wavelength)

HgTe Quantum Dots

- Aggregation/dispersion stability
 - Redshifted emission in dropcast films
 - Prevented using polystyrene
 - Still long term (10s of nm/week) shift observed
 - Study planned as a function of QD dilution

Should we send a new sample to UVE?

HgTe Quantum Dots

- Thresholdless gain
 - Conditions for thresholdless gain pinpointed
 - Redshift of bandgap emission relative to absorption
 - Blueshift of excited state absorption
 - Experimental work:
 - New TA measurement planned on sample synthesized with polystyrene
 - Sample sent for Raman analysis (to study strong electronphonon coupling)

Outlook

- Finalize experimental study
 - Confirm results on samples with long-term stability
 - Raman study to assess electron-phonon coupling strength
- Extend analysis to HgTe QD films

