NAVOLCHI

V. Calzadilla, M. Smit

June 2015

Technische Universiteit **Eindhoven** University of Technology

Where innovation starts

MS40	Individual plasmonic devices	WP6
	characterization, testing and evaluation	

- Contents of D6.1 will be used (Report on characterization results of all plasmonic devices).
- An e-mail will follow requesting additional input (if any)

Outline

Integrated nanoLED for photonic circuits

• The metal-cavity nanoLED was fabricated in a III-V layer stack bonded to a silicon wafer

Experimental characterization setup

- Electro-luminescence setup with a cryogenic chamber
- Temperatures: RT, 150K, 75K, 9K
- Collection spot ~2 μm (grating coupler ~10x12 μm²)
- Maximum collection angle: 23°

COBRA TU/e Technische Universiteit Eindhoven University of Technology

F. Pagliano, PhD thesis, 2014.

Emission spectra

- Operation at telecommunications wavelengths (~1.5 um);
- FWHM ranging from 20 nm to 50 nm at low injection currents;
- <u>Wavelength blueshift (carrier induced change in the refractive index)</u>

e Universiteit

onversity of Technology

L-I-V characteristics

- Smooth turn-on voltage:
 → Leakage current?
- Max. power: 4 nW

- Shifted turn-on voltage due to low temperature
- Max. power: 28 nW
- Efficiencies ~10⁻³ W/A

Nano-sources in the literature

Powers in arbitrary units

Powers below 1 pW!

Plasmonic light-emitting diode (Kevin C. Y. Huang et al., Nature Photonics 8, 2014) **Electrically pumped photonic crystals** (Bryan Ellis et al., Nature Photonics 5, 2011)

Iniversity of Technology

Reported efficiencies in the literature spanning from 10⁻⁵ to 10⁻⁷

Direct electrical modulation of nanoLED

- Sub-nanosecond FWHM (~0.5 ns minimum)
- Potential to operate at Gb/s speeds.

"Encoding" a message in a nanoLED

Photoluminescence in InGaAs nanopillars

• SEM pictures of the smallest pillars

• Layer stack

InP	350
InGaAs	350
InP	1000
InP	Substrate

- Steps
- 1) Etching+O2
- 2) Cleaning
- 3) SiOx deposition @ 300°C + annealing

 The deposition of SiOx at high temperature is strongly affecting the optical properties of the pillars

PL summary results

ersiteit hnology

Decay time vs. pillar size

Surface recombination and bulk lifetime

- Large surface recombination indicating strong non-radiative losses;
- The presence of <u>a fast non-radiative recombination</u> gives rise to the possibility of a high-speed operation at room temperature.

eit

ogy

13/14

- Demonstration of an electrically pumped metal cavity nanoLED coupled to a InP-waveguide on silicon.
- Possibility of a fast, efficient, nanoscale source for on-chip communication:
- **Operation at telecommunication wavelengths (~1.5 um);** \checkmark
- Measured output powers of tens of nW and efficiencies up to $\sim 10^{-3}$ W/A; \checkmark
- Sub-nanosecond direct electrical modulation.

sche Universiteit ven sity of Technology

