Vlad Badilita

Dr. Vlad Badilita

  • Karlsruhe Institute of Technology
    Institute of Microstructure Technology
    Hermann-von-Helmholtz-Platz 1
    76344 Eggenstein-Leopoldshafen

Vlad Badilita has received his B.Sc. (1997) and M.Sc. (1999) degrees in Solid State Physics from the University of Bucharest, Romania. In 2004 he obtained the Ph.D. degree in the field of Semiconductor Photonics from the Swiss Federal Institute of Technology in Lausanne (EPFL) with the thesis “Study of Vertical Coupled-Cavity Laser Structures” under the guidance of Prof. Marc Ilegems.

In 2005, Dr. Badilita joined the MEMS Sensors and Actuators Lab (MSAL) at the Univ. of Maryland at College Park as a postdoctoral research associate until 2007. Between 2007 and 2015, Dr. Badilita was with the Laboratory for Microactuators at IMTEK, Univ. of Freiburg as a Group Leader for Magnetic Microsystems.

In 2015, he moved to KIT at the Institute of Microstructure Technology as the group leader of the Spin & Photon Applications (SPA-) Laboratory. His research interests cover the broad area of MEMS with a focus on miniaturized detectors for magnetic resonance spectroscopy and imaging applications, as well as electromagnetic microactuators.


  1. K.V. Poletkin, Z. Lu, A. Moazenzadeh, S.G. Mariappan, J.G. Korvink, U. Wallrabe, V. Badilita, “Polymer Magnetic Composite Core Boosts Performance of Three-Dimensional Micromachined Inductive Contactless Suspension”, IEEE Magn. Lett., Vol. 7 (2016), 1307604 (4pp). (PDF)
  2. R. Lausecker, V. Badilita, U. Gleißner, U. Wallrabe, “Introducing natural thermoplastic shellac to microfluidics: A green fabrication method for point-of-care devices”, Biomicrofluidics, 10, 044101 (2016). (PDF)
  3. N. Spengler, J. Höfflin, A. Moazenzadeh, D. Mager, N. MacKinnon, V. Badilita, U. Wallrabe, J.G. Korvink, “Heteronuclear Micro-Helmholtz Coil Facilitates μm-Range Spatial and Sub-Hz Spectral Resolution NMR of nL-Volume Samples on Customisable Microfluidic Chips”,  PLoS ONE 11(1): e0146384 (2016); doi:10.1371/ journal.pone.0146384. (PDF)
  4. K. Poletkin, Z. Lu, U. Wallrabe, V. Badilita, “A New Hybrid Micromachined Contactless Suspension With Linear and Angular Positioning and Adjustable Dynamics”, IEEE J Microelectromechanical Systems, Vol. 24, No. 5, Oct. 2015. (PDF)
  5. Z. Lu, Kirill Poletkin, B. den Hartogh, U. Wallrabe, V. Badilita, “3D micro-machined inductive contactless suspension: Testing and modeling”, Sensors Actuators A 220 (2014) 134–143. (PDF)
  6. A. Moazenzadeh, F.S. Sandoval, N. Spengler, V. Badilita, U. Wallrabe, “3-D Microtransformers for DC–DC On-Chip Power Conversion”, IEEE Trans. Power Electronics, Vol. 30, No 9, Sept. 2015. (PDF)
  7. Z. Lu, K. Poletkin, U. Wallrabe, V. Badilita, “Performance Characterization of Micromachined Inductive Suspensions Based on 3D Wire-Bonded Microcoils”, Micromachines 2014, 5, 1469-1484; doi:10.3390/mi5041469.
  8. R.Ch. Meier, J. Höfflin, V. Badilita, U. Wallrabe, J.G Korvink, “Microfluidic integration of wirebonded microcoils for on-chip applications in nuclear magnetic resonance”, J. Micromech. Microeng. 24 (2014) 045021 (12pp). (PDF)
  9. N. Spengler, A. Moazenzadeh, R.Ch. Meier, V. Badilita, J.G. Korvink, and U. Wallrabe, “Micro-fabricated Helmholtz coil featuring disposable microfluidic sample inserts for applications in nuclear magnetic resonance”, J. Micromech. Microeng., 2014, 24, 034004 (10pp). (PDF)
  10. V. Badilita, R.Ch. Meier, N. Spengler, U. Wallrabe, M. Utz, J.G. Korvink, “Microscale nuclear magnetic resonance: a tool for soft matter research”, Soft Matter, 2012, 8, 10583. (PDF)
  11. V. Badilita, B. Fassbender, K. Kratt, A. Wong, C. Bonhomme, D. Sakellariou, J.G. Korvink, U. Wallrabe (2012) “Microfabricated Inserts for Magic Angle Coil Spinning (MACS) Wireless NMR Spectroscopy”, PLoS ONE 7(8): e42848. doi:10.1371/journal.pone.0042848. (PDF)
  12. O.G. Gruschke, N. Baxan, L. Clad, K. Kratt, D. von Elverfeldt, A. Peter, J. Hennig, V. Badilita, U. Wallrabe and J.G. Korvink, “Lab on a chip phased-array MR multi-platform analysis system”, Lab Chip, 2012, 12, 495. (PDF)
  13. R.Ch. Meier, V. Badilita, J. Brunne, U. Wallrabe, and J.G Korvink, “Complex three-dimensional high aspect ratio microfluidic network manufactured in combined PerMX dry-resist and SU-8 technology”, Biomicrofluidics, 2011, 5, 034111. (PDF)
  14. S. Waselikowski, K. Kratt, V. Badilita, U. Wallrabe, J.G. Korvink, and M. Walther, “Three-dimensional microcoils as terahertz metamaterial with electric and magnetic response”, Appl. Phys. Lett., 2010, 97, 261105. (PDF)
  15. M. Mohmmadzadeh, N. Baxan, V. Badilita, K. Kratt, H. Weber, J.G. Korvink, U. Wallrabe, J. Hennig, and D. von Elverfeldt, “Characterization of a 3D MEMS fabricated micro-solenoid at 9.4 T”, J. Magn. Res., 2011, 208, 20–26. (PDF)
  16. V. Badilita, K. Kratt, N. Baxan, M. Mohmmadzadeh, T. Burger, H. Weber, D. v. Elverfeldt, J. Hennig, J.G. Korvink, and U. Wallrabe, On-chip three dimensional microcoils for MRI at the microscale, Lab Chip, 2010, 10, 1387–1390. (PDF)
  17. K. Kratt, V. Badilita, T. Burger, J. Mohr, M. Börner, J.G. Korvink, and U. Wallrabe, “High aspect ratio PMMA posts and characterization method for micro coils manufactured with an automatic wire bonder”, Sensors Actuators A, 2009, 156, 328–333. (PDF)
  18. K. Kratt, V. Badilita, T. Burger, J.G. Korvink, and U. Wallrabe, “A fully MEMS-compatible process for 3D high aspect ratio micro coils obtained with an automatic wire bonder”, J. Micromech. Microeng. 2010, 20, 015021 (11pp). (PDF)
  19. V. Badilita, J.F. Carlin, M. Ilegems, and K. Panajotov, “Rate-equation model for coupled-cavity surface-emitting lasers”, IEEE J. Quantum Electronics, 2004, 40, pp. 1646 – 1656. (PDF)
  20. V Badilita, J-F Carlin, M Ilegems, M Brunner, G Verschaffelt, K Panajotov, “Control of polarization switching in vertical coupled-cavities surface emitting lasers”, IEEE Phot. Tech. Lett., 2004, 16, pp. 365-367. (PDF)
  21. A. Müller, S. Iordanescu, I. Petrini, V. Avramescu, G. Simion, D. Vasilache, V. Badilita, D. Dascalu, G. Konstantinidis, R. Marcelli, G. Bartolucci, K. Hjort, and D. Pasquariello, “Polyimide based GaAs micromachined millimeter wave structures”, J. Micromech. Microeng., 2000, 10, 130–135. (PDF)