Publications
2021
Mamyrbayev, T.; Ikematsu, K.; Takano, H.; Wu, Y.; Kimura, K.; Doll, P.; Last, A.; Momose, A.; Meyer, P.
Staircase array of inclined refractive multi-lenses for large field of view pixel super-resolution scanning transmission hard X-ray microscopy.
2021. Journal of synchrotron radiation, 28 (3). doi:10.1107/S1600577521001521
Staircase array of inclined refractive multi-lenses for large field of view pixel super-resolution scanning transmission hard X-ray microscopy.
2021. Journal of synchrotron radiation, 28 (3). doi:10.1107/S1600577521001521
Andrejewski, J.; De Marco, F.; Willer, K.; Noichl, W.; Gustschin, A.; Koehler, T.; Meyer, P.; Kriner, F.; Fischer, F.; Braun, C.; Fingerle, A. A.; Herzen, J.; Pfeiffer, F.; Pfeiffer, D.
Whole-body x-ray dark-field radiography of a human cadaver.
2021. European radiology experimental, 5 (6). doi:10.1186/s41747-020-00201-1
Whole-body x-ray dark-field radiography of a human cadaver.
2021. European radiology experimental, 5 (6). doi:10.1186/s41747-020-00201-1
2020
Qiao, Z.; Shi, X.; Kenesei, P.; Last, A.; Assoufid, L.; Islam, Z.
A large field-of-view high-resolution hard x-ray microscope using polymer optics.
2020. Review of scientific instruments, 91 (11), 113703. doi:10.1063/5.0011961
A large field-of-view high-resolution hard x-ray microscope using polymer optics.
2020. Review of scientific instruments, 91 (11), 113703. doi:10.1063/5.0011961
Last, A.; Gutekunst, J.; Opolka, A.; Krug, M.; Schwitzke, C.; Koch, R.; Mohr, J.
Liquid compound refractive X-ray lens.
2020. Optics express, 28 (15), 22144–22150. doi:10.1364/OE.389058
Liquid compound refractive X-ray lens.
2020. Optics express, 28 (15), 22144–22150. doi:10.1364/OE.389058
Nazmov, V. P.; Goldenberg, B. G.; Reznikova, E. F.; Boerner, M.
Self-aligned single-exposure deep x-ray lithography.
2020. SYNCHROTRON AND FREE ELECTRON LASER RADIATION: Generation and Application (SFR-2020), Article no: 060010, AIP Publishing. doi:10.1063/5.0030469
Self-aligned single-exposure deep x-ray lithography.
2020. SYNCHROTRON AND FREE ELECTRON LASER RADIATION: Generation and Application (SFR-2020), Article no: 060010, AIP Publishing. doi:10.1063/5.0030469
Mamyrbayev, T.; Opolka, A.; Ershov, A.; Gutekunst, J.; Meyer, P.; Ikematsu, K.; Momose, A.; Last, A.
Development of an Array of Compound Refractive Lenses for Sub-Pixel Resolution, Large Field of View, and Time-Saving in Scanning Hard X-ray Microscopy.
2020. Applied Sciences, 10 (12), Art.Nr.: 4132. doi:10.3390/app10124132
Development of an Array of Compound Refractive Lenses for Sub-Pixel Resolution, Large Field of View, and Time-Saving in Scanning Hard X-ray Microscopy.
2020. Applied Sciences, 10 (12), Art.Nr.: 4132. doi:10.3390/app10124132
2019
Mamyrbayev, T.; Ikematsu, K.; Meyer, P.; Ershov, A.; Momose, A.; Mohr, J.
Super-Resolution Scanning Transmission X-Ray Imaging Using Single Biconcave Parabolic Refractive Lens Array.
2019. Scientific reports, 9 (1), Article: 14366. doi:10.1038/s41598-019-50869-8
Super-Resolution Scanning Transmission X-Ray Imaging Using Single Biconcave Parabolic Refractive Lens Array.
2019. Scientific reports, 9 (1), Article: 14366. doi:10.1038/s41598-019-50869-8
Seifert, M.; Ludwig, V.; Kaeppler, S.; Horn, F.; Meyer, P.; Pelzer, G.; Rieger, J.; Sand, D.; Michel, T.; Mohr, J.; Riess, C.; Anton, G.
Talbot-Lau x-ray phase-contrast setup for fast scanning of large samples.
2019. Scientific reports, 9 (1), Article no: 4199. doi:10.1038/s41598-018-38030-3
Talbot-Lau x-ray phase-contrast setup for fast scanning of large samples.
2019. Scientific reports, 9 (1), Article no: 4199. doi:10.1038/s41598-018-38030-3
Jark, W.; Opolka, A.; Cecilia, A.; Last, A.
Zooming X-rays with a single rotation in X-ray prism zoom lenses (XPZL).
2019. Optics express, 27 (12), 16781. doi:10.1364/OE.27.016781
Zooming X-rays with a single rotation in X-ray prism zoom lenses (XPZL).
2019. Optics express, 27 (12), 16781. doi:10.1364/OE.27.016781
Gustschin, N.; Gustschin, A.; Meyer, P.; Viermetz, M.; Riederer, P.; Herzen, J.; Mohr, J.; Pfeifferark, F.
Quality and parameter control of X-ray absorption gratings by angular X-ray transmission.
2019. Optics express, 27 (11), 15943–15955. doi:10.1364/OE.27.015943
Quality and parameter control of X-ray absorption gratings by angular X-ray transmission.
2019. Optics express, 27 (11), 15943–15955. doi:10.1364/OE.27.015943
Faisal, A.; Beckenbach, T.; Mohr, J.; Meyer, P.
Influence of secondary effects in the fabrication of submicron resist structures using deep x-ray lithography.
2019. Journal of micro/nanolithography, MEMS and MOEMS, 18 (2), Article no: 023502. doi:10.1117/1.JMM.18.2.023502
Influence of secondary effects in the fabrication of submicron resist structures using deep x-ray lithography.
2019. Journal of micro/nanolithography, MEMS and MOEMS, 18 (2), Article no: 023502. doi:10.1117/1.JMM.18.2.023502
Mazhar, W.; Klymyshyn, D. M.; Tayfeh Aligodarz, M.; Ganguly, S.; Qureshi, A. A.; Boerner, M.
CPW fed grid dielectric resonator antennas with enhanced gain and bandwidth.
2019. International journal of RF and microwave computer-aided engineering, 29 (3), Art. Nr.: e21639. doi:10.1002/mmce.21639
CPW fed grid dielectric resonator antennas with enhanced gain and bandwidth.
2019. International journal of RF and microwave computer-aided engineering, 29 (3), Art. Nr.: e21639. doi:10.1002/mmce.21639
Kornemann, E.; Zhou, T.; Márkus, O.; Opolka, A.; Schülli, T. U.; Mohr, J.; Last, A.
X-ray zoom lens allows for energy scans in X-ray microscopy.
2019. Optics express, 27 (1), 185–195. doi:10.1364/OE.27.000185
X-ray zoom lens allows for energy scans in X-ray microscopy.
2019. Optics express, 27 (1), 185–195. doi:10.1364/OE.27.000185
2018
Hellbach, K.; Baehr, A.; De Marco, F.; Willer, K.; Gromann, L. B.; Herzen, J.; Dmochewitz, M.; Auweter, S.; Fingerle, A. A.; Noël, P. B.; Rummeny, E. J.; Yaroshenko, A.; Maack, H.-I.; Pralow, T.; van der Heijden, H.; Wieberneit, N.; Proksa, R.; Koehler, T.; Rindt, K.; Schroeter, T. J.; Mohr, J.; Bamberg, F.; Ertl-Wagner, B.; Pfeiffer, F.; Reiser, M. F.
Depiction of pneumothoraces in a large animal model using x-ray dark-field radiography.
2018. Scientific Reports, 8 (1), 2602. doi:10.1038/s41598-018-20985-y
Depiction of pneumothoraces in a large animal model using x-ray dark-field radiography.
2018. Scientific Reports, 8 (1), 2602. doi:10.1038/s41598-018-20985-y
Márkus, O.; Greving, I.; Kornemann, E.; Storm, M.; Beckmann, F.; Mohr, J.; Last, A.
Optimizing illumination for full field imaging at high brilliance hard X-ray synchrotron sources.
2018. Optics express, 26 (23), 30435. doi:10.1364/OE.26.030435
Optimizing illumination for full field imaging at high brilliance hard X-ray synchrotron sources.
2018. Optics express, 26 (23), 30435. doi:10.1364/OE.26.030435
Kornemann, E.; Márkus, O.; Opolka, A.; Sawhney, K.; Cecilia, A.; Hurst, M.; Baumbach, T.; Last, A.; Mohr, J.
Optical Characterization of an X-ray Zoom Lens.
2018. Microscopy and microanalysis, 24 (S2), 270–271. doi:10.1017/S1431927618013685
Optical Characterization of an X-ray Zoom Lens.
2018. Microscopy and microanalysis, 24 (S2), 270–271. doi:10.1017/S1431927618013685
Qureshi, A. A.; Klymyshyn, D. M.; Börner, M.; Guttmann, M.; Schneider, M.; Mazhar, W.; Mohr, J.
On the application of micro hot embossing for mass fabrication of template-based dielectric resonator antenna arrays.
2018. Microsystem technologies, 24 (9), 3893–3900. doi:10.1007/s00542-018-3889-z
On the application of micro hot embossing for mass fabrication of template-based dielectric resonator antenna arrays.
2018. Microsystem technologies, 24 (9), 3893–3900. doi:10.1007/s00542-018-3889-z
Vlnieska, V.; Zakharova, M.; Börner, M.; Bade, K.; Mohr, J.; Kunka, D.
Chemical and Molecular Variations in Commercial Epoxide Photoresists for X-ray Lithography.
2018. Applied Sciences, 8 (4), 528. doi:10.3390/app8040528
Chemical and Molecular Variations in Commercial Epoxide Photoresists for X-ray Lithography.
2018. Applied Sciences, 8 (4), 528. doi:10.3390/app8040528
Zakharova, M.; Vlnieska, V.; Fornasier, H.; Börner, M.; Rolo, T. dos S.; Mohr, J.; Kunka, D.
Development and Characterization of Two-Dimensional Gratings for Single-Shot X-ray Phase-Contrast Imaging.
2018. Applied Sciences, 8 (3), 468. doi:10.3390/app8030468
Development and Characterization of Two-Dimensional Gratings for Single-Shot X-ray Phase-Contrast Imaging.
2018. Applied Sciences, 8 (3), 468. doi:10.3390/app8030468
Achenbach, S.; Hengsbach, S.; Schulz, J.; Mohr, J.
Optimization of laser writer-based UV lithography with high magnification optics to pattern X-ray lithography mask templates.
2018. Microsystem technologies, 25 (8), 2975–2983. doi:10.1007/s00542-018-4161-2
Optimization of laser writer-based UV lithography with high magnification optics to pattern X-ray lithography mask templates.
2018. Microsystem technologies, 25 (8), 2975–2983. doi:10.1007/s00542-018-4161-2
Willer, K.; Fingerle, A. A.; Gromann, L. B.; De Marco, F.; Herzen, J.; Achterhold, K.; Gleich, B.; Muenzel, D.; Scherer, K.; Renz, M.; Renger, B.; Kopp, F.; Kriner, F.; Fischer, F.; Braun, C.; Auweter, S.; Hellbach, K.; Reiser, M. F.; Schroeter, T.; Mohr, J.; Yaroshenko, A.; Maack, H.-I.; Pralow, T.; van der Heijden, H.; Proksa, R.; Koehler, T.; Wieberneit, N.; Rindt, K.; Rummeny, E. J.; Pfeiffer, F.; Noël, P. B.; Nolan, A.
X-ray dark-field imaging of the human lung—A feasibility study on a deceased body.
2018. PLoS one, 13 (9), e0204565. doi:10.1371/journal.pone.0204565
X-ray dark-field imaging of the human lung—A feasibility study on a deceased body.
2018. PLoS one, 13 (9), e0204565. doi:10.1371/journal.pone.0204565
Santos Rolo, T. dos; Reich, S.; Karpov, D.; Gasilov, S.; Kunka, D.; Fohtung, E.; Baumbach, T.; Plech, A.
A Shack-Hartmann Sensor for Single-Shot Multi-Contrast Imaging with Hard X-rays.
2018. Applied Sciences, 8 (5), Art.Nr. 737. doi:10.3390/app8050737
A Shack-Hartmann Sensor for Single-Shot Multi-Contrast Imaging with Hard X-rays.
2018. Applied Sciences, 8 (5), Art.Nr. 737. doi:10.3390/app8050737
Zdora, M.-C.; Zanette, I.; Zhou, T.; Koch, F. J.; Romell, J.; Sala, S.; Last, A.; Ohishi, Y.; Hirao, N.; Rau, C.; Thibault, P.
At-wavelength optics characterisation via X-ray speckle- and grating-based unified modulated pattern analysis.
2018. Optics express, 26 (4), 4989–5004. doi:10.1364/OE.26.004989
At-wavelength optics characterisation via X-ray speckle- and grating-based unified modulated pattern analysis.
2018. Optics express, 26 (4), 4989–5004. doi:10.1364/OE.26.004989
2017
Fella, C.; Balles, A.; Hanke, R.; Last, A.; Zabler, S.
Hybrid setup for micro- and nano-computed tomography in the hard X-ray range.
2017. Review of scientific instruments, 88 (12), Art. Nr.: 123702. doi:10.1063/1.5011042
Hybrid setup for micro- and nano-computed tomography in the hard X-ray range.
2017. Review of scientific instruments, 88 (12), Art. Nr.: 123702. doi:10.1063/1.5011042
Kornemann, E.; Márkus, O.; Opolka, A.; Zhou, T.; Greving, I.; Storm, M.; Krywka, C.; Last, A.; Mohr, J.
Miniaturized compound refractive X-ray zoom lens.
2017. Optics express, 25 (19), 22455–22466. doi:10.1364/OE.25.022455
Miniaturized compound refractive X-ray zoom lens.
2017. Optics express, 25 (19), 22455–22466. doi:10.1364/OE.25.022455
Horn, F.; Gelse, K.; Jabari, S.; Hauke, C.; Kaeppler, S.; Ludwig, V.; Meyer, P.; Michel, T.; Mohr, J.; Pelzer, G.; Rieger, J.; Riess, C.; Seifert, M.; Anton, G.
High-energy x-ray Talbot-Lau radiography of a human knee.
2017. Physics in medicine and biology, 62 (16), 6729–6745. doi:10.1088/1361-6560/aa7721
High-energy x-ray Talbot-Lau radiography of a human knee.
2017. Physics in medicine and biology, 62 (16), 6729–6745. doi:10.1088/1361-6560/aa7721
Qureshi, A. A.; Klymyshyn, D. M.; Tayfeh, M.; Mazhar, W.; Börner, M.; Mohr, J.
Template-Based Dielectric Resonator Antenna Arrays for Millimeter-Wave Applications.
2017. IEEE transactions on antennas and propagation, 65 (9), 4576–4584. doi:10.1109/TAP.2017.2724585
Template-Based Dielectric Resonator Antenna Arrays for Millimeter-Wave Applications.
2017. IEEE transactions on antennas and propagation, 65 (9), 4576–4584. doi:10.1109/TAP.2017.2724585
Greving, I.; Ogurreck, M.; Marschall, F.; Last, A.; Wilde, F.; Dose, T.; Burmester, H.; Lottermoser, L.; Müller, M.; David, C.; Beckmann, F.
Nanotomography endstation at the P05 beamline : Status and perspectives.
2017. Journal of physics / Conference Series, 849 (1), Art.Nr.: 012056. doi:10.1088/1742-6596/849/1/012056
Nanotomography endstation at the P05 beamline : Status and perspectives.
2017. Journal of physics / Conference Series, 849 (1), Art.Nr.: 012056. doi:10.1088/1742-6596/849/1/012056
Gromann, L. B.; De Marco, F.; Willer, K.; Noël, P. B.; Scherer, K.; Renger, B.; Gleich, B.; Achterhold, K.; Fingerle, A. A.; Muenzel, D.; Auweter, S.; Hellbach, K.; Reiser, M.; Baehr, A.; Dmochewitz, M.; Schroeter, T. J.; Koch, F. J.; Meyer, P.; Kunka, D.; Mohr, J.; Yaroshenko, A.; Maack, H.-I.; Pralow, T.; Van Der Heijden, H.; Proksa, R.; Koehler, T.; Wieberneit, N.; Rindt, K.; Rummeny, E. J.; Pfeiffer, F.; Herzen, J.
In-vivo X-ray Dark-Field Chest Radiography of a Pig.
2017. Scientific reports, 7 (1), Art. Nr. 4807. doi:10.1038/s41598-017-05101-w
In-vivo X-ray Dark-Field Chest Radiography of a Pig.
2017. Scientific reports, 7 (1), Art. Nr. 4807. doi:10.1038/s41598-017-05101-w
Schröter, T. J.; Koch, F. J.; Meyer, P.; Kunka, D.; Meiser, J.; Willer, K.; Gromann, L.; De Marco, F.; Herzen, J.; Noel, P.; Yaroshenko, A.; Hofmann, A.; Pfeiffer, F.; Mohr, J.
Large field-of-view tiled grating structures for X-ray phase-contrast imaging.
2017. Review of scientific instruments, 88 (2), Art.Nr.: 029901. doi:10.1063/1.4975395
Large field-of-view tiled grating structures for X-ray phase-contrast imaging.
2017. Review of scientific instruments, 88 (2), Art.Nr.: 029901. doi:10.1063/1.4975395
Rieger, J.; Meyer, P.; Horn, F.; Pelzer, G.; Michel, T.; Mohr, J.; Anton, G.
Optimization procedure for a Talbot-Lau x-ray phase-contrast imaging system.
2017. Journal of Instrumentation, 12 (4), Art. Nr.: P04018. doi:10.1088/1748-0221/12/04/P04018
Optimization procedure for a Talbot-Lau x-ray phase-contrast imaging system.
2017. Journal of Instrumentation, 12 (4), Art. Nr.: P04018. doi:10.1088/1748-0221/12/04/P04018
Schröter, T. J.; Koch, F. J.; Kunka, D.; Meyer, P.; Tietze, S.; Engelhardt, S.; Zuber, M.; Baumbach, T.; Willer, K.; Birnbacher, L.; Prade, F.; Pfeiffer, F.; Reichert, K.-M.; Hofmann, A.; Mohr, J.
Large-area full field x-ray differential phase-contrast imaging using 2D tiled gratings.
2017. Journal of physics / D, 50 (22), Art.Nr. 225401. doi:10.1088/1361-6463/aa6e85
Large-area full field x-ray differential phase-contrast imaging using 2D tiled gratings.
2017. Journal of physics / D, 50 (22), Art.Nr. 225401. doi:10.1088/1361-6463/aa6e85
Zdora, M.-C.; Thibault, P.; Zhou, T.; Koch, F. J.; Romell, J.; Sala, S.; Last, A.; Rau, C.; Zanette, I.
X-ray Phase-Contrast Imaging and Metrology through Unified Modulated Pattern Analysis.
2017. Physical review letters, 118 (20), Art.Nr. 203903. doi:10.1103/PhysRevLett.118.203903
X-ray Phase-Contrast Imaging and Metrology through Unified Modulated Pattern Analysis.
2017. Physical review letters, 118 (20), Art.Nr. 203903. doi:10.1103/PhysRevLett.118.203903
Sowa, K. M.; Last, A.; Korecki, P.
Grid-enhanced X-ray coded aperture microscopy with polycapillary optics.
2017. Scientific reports, 7, Art.Nr.: 44944. doi:10.1038/srep44944
Grid-enhanced X-ray coded aperture microscopy with polycapillary optics.
2017. Scientific reports, 7, Art.Nr.: 44944. doi:10.1038/srep44944
Koch, F. J.; O’Dowd, F. P.; Cardoso, M. B.; Da Silva, R. R.; Cavicchioli, M.; Ribeiro, S. J. L.; Schröter, T. J.; Faisal, A.; Meyer, P.; Kunka, D.; Mohr, J.
Low energy X-ray grating interferometry at the Brazilian Synchrotron.
2017. Optics communications, 393, 195–198. doi:10.1016/j.optcom.2017.02.055
Low energy X-ray grating interferometry at the Brazilian Synchrotron.
2017. Optics communications, 393, 195–198. doi:10.1016/j.optcom.2017.02.055
Prade, F.; Schaff, F.; Senck, S.; Meyer, P.; Mohr, J.; Kastner, J.; Pfeiffer, F.
Nondestructive characterization of fiber orientation in short fiber reinforced polymer composites with X-ray vector radiography.
2017. NDT & E international, 86, 65–72. doi:10.1016/j.ndteint.2016.11.013
Nondestructive characterization of fiber orientation in short fiber reinforced polymer composites with X-ray vector radiography.
2017. NDT & E international, 86, 65–72. doi:10.1016/j.ndteint.2016.11.013
Schröter, T. J.; Koch, F.; Meyer, P.; Baumann, M.; Münch, D.; Kunka, D.; Engelhardt, S.; Zuber, M.; Baumbach, T.; Mohr, J.
Large area gratings by x-ray LIGA dynamic exposure for x-ray phase-contrast imaging.
2017. Journal of micro/nanolithography, MEMS and MOEMS, 16 (1), 013501. doi:10.1117/1.JMM.16.1.013501
Large area gratings by x-ray LIGA dynamic exposure for x-ray phase-contrast imaging.
2017. Journal of micro/nanolithography, MEMS and MOEMS, 16 (1), 013501. doi:10.1117/1.JMM.16.1.013501
Schröter, T. J.; Koch, F. J.; Meyer, P.; Kunka, D.; Meiser, J.; Willer, K.; Gromann, L.; De Marco, F.; Herzen, J.; Noel, P.; Yaroshenko, A.; Hofmann, A.; Pfeiffer, F.; Mohr, J.
Large field-of-view tiled grating structures for X-ray phase-contrast imaging.
2017. Review of scientific instruments, 88 (1), 015104. doi:10.1063/1.4973632
Large field-of-view tiled grating structures for X-ray phase-contrast imaging.
2017. Review of scientific instruments, 88 (1), 015104. doi:10.1063/1.4973632
2016
Krywka, C.; Last, A.; Marschall, F.; Márkus, O.; Georgi, S.; Müller, M.; Mohr, J.
Polymer compound refractive lenses for hard X-ray nanofocusing.
2016. AIP conference proceedings, 1764 (1), Art. Nr. 020001. doi:10.1063/1.4961129
Polymer compound refractive lenses for hard X-ray nanofocusing.
2016. AIP conference proceedings, 1764 (1), Art. Nr. 020001. doi:10.1063/1.4961129
Ogurreck, M.; do Rosario, J. J.; Leib, E. W.; Laipple, D.; Greving, I.; Marschall, F.; Last, A.; Schneider, G. A.; Vossmeyer, T.; Weller, H.; Beckmann, F.; Müller, M.
Determination of the packing fraction in photonic glass using synchrotron radiation nanotomography.
2016. Journal of synchrotron radiation, 23 (6), 1440–1446. doi:10.1107/S1600577516012960
Determination of the packing fraction in photonic glass using synchrotron radiation nanotomography.
2016. Journal of synchrotron radiation, 23 (6), 1440–1446. doi:10.1107/S1600577516012960
Ebraert, E.; Gökçe, B.; Van Vlierberghe, S.; Vervaeke, M.; Meyer, P.; Guttmann, M.; Dubruel, P.; Thienpont, H.; Van Erps, J.
Deep proton writing with 12 MeV protons for rapid prototyping of microstructures in polymethylmethacrylate.
2016. Journal of micro/nanolithography, MEMS and MOEMS, 15 (4), 044501. doi:10.1117/1.JMM.15.4.044501
Deep proton writing with 12 MeV protons for rapid prototyping of microstructures in polymethylmethacrylate.
2016. Journal of micro/nanolithography, MEMS and MOEMS, 15 (4), 044501. doi:10.1117/1.JMM.15.4.044501
Nazmov, V.; Reznikova, E.; Mohr, J.; Saile, V.; Tajiri, H.; Voigt, A.
Large-aperture two-dimensional x-ray refractive mosaic lenses.
2016. Applied optics, 55 (25), 7138–7141. doi:10.1364/AO.55.007138
Large-aperture two-dimensional x-ray refractive mosaic lenses.
2016. Applied optics, 55 (25), 7138–7141. doi:10.1364/AO.55.007138
Prade, F.; Fischer, K.; Heinz, D.; Meyer, P.; Mohr, J.; Pfeiffer, F.
Time resolved X-ray Dark-Field Tomography Revealing Water Transport in a Fresh Cement Sample.
2016. Scientific reports, 6, 29108/1–7. doi:10.1038/srep29108
Time resolved X-ray Dark-Field Tomography Revealing Water Transport in a Fresh Cement Sample.
2016. Scientific reports, 6, 29108/1–7. doi:10.1038/srep29108
Rieger, J.; Meyer, P.; Pelzer, G.; Weber, T.; Michel, T.; Mohr, J.; Anton, G.
Designing the phase grating for Talbot-Lau phase-contrast imaging systems: a simulation and experiment study.
2016. Optics express, 24 (12), 13357–13364. doi:10.1364/OE.24.013357
Designing the phase grating for Talbot-Lau phase-contrast imaging systems: a simulation and experiment study.
2016. Optics express, 24 (12), 13357–13364. doi:10.1364/OE.24.013357
Meiser, J.; Willner, M.; Schröter, T.; Hofmann, A.; Rieger, J.; Koch, F.; Birnbacher, L.; Schüttler, M.; Kunka, D.; Meyer, P.; Faisal, A.; Amberger, M.; Duttenhofer, T.; Weber, T.; Hipp, A.; Ehn, S.; Walter, M.; Herzen, J.; Schulz, J.; Pfeiffer, F.; Mohr, J.
Increasing the field of view in grating based X-ray phase contrast imaging using stitched gratings.
2016. Journal of X-Ray Science and Technology, 24 (3), 379–388. doi:10.3233/XST-160552
Increasing the field of view in grating based X-ray phase contrast imaging using stitched gratings.
2016. Journal of X-Ray Science and Technology, 24 (3), 379–388. doi:10.3233/XST-160552
Koenig, T.; Zuber, M.; Trimborn, B.; Farago, T.; Meyer, P. J.; Kunka, D.; Albrecht, F. W.; Kreuer, S.; Volk, T.; Fiederle, M.; Baumbach, T.
On the origin and nature of the grating interferometric dark-field contrast obtained with low-brilliance x-ray sources.
2016. Physics in medicine and biology, 61 (9), 3427–3442. doi:10.1088/0031-9155/61/9/3427
On the origin and nature of the grating interferometric dark-field contrast obtained with low-brilliance x-ray sources.
2016. Physics in medicine and biology, 61 (9), 3427–3442. doi:10.1088/0031-9155/61/9/3427
Marschall, F.; Last, A.; Simon, M.; Vogt, H.; Mohr, J.
Simulation of aperture-optimised refractive lenses for hard X-ray full field microscopy.
2016. Optics express, 24 (10), 10880–10889. doi:10.1364/OE.24.010880
Simulation of aperture-optimised refractive lenses for hard X-ray full field microscopy.
2016. Optics express, 24 (10), 10880–10889. doi:10.1364/OE.24.010880
Koch, F. J.; Detlefs, C.; Schröter, T. J.; Kunka, D.; Last, A.; Mohr, J.
Quantitative characterization of X-ray lenses from two fabrication techniques with grating interferometry.
2016. Optics express, 24 (9), 9168–9177. doi:10.1364/OE.24.009168
Quantitative characterization of X-ray lenses from two fabrication techniques with grating interferometry.
2016. Optics express, 24 (9), 9168–9177. doi:10.1364/OE.24.009168
Birnbacher, L.; Willner, M.; Velroyen, A.; Marschner, M.; Hipp, A.; Meiser, J.; Koch, F.; Schröter, T.; Kunka, D.; Mohr, J.; Pfeiffer, F.; Herzen, J.
Experimental Realisation of High-sensitivity Laboratory X-ray Grating-based Phase-contrast Computed Tomography.
2016. Scientific reports, 6 (4), 24022. doi:10.1038/srep24022
Experimental Realisation of High-sensitivity Laboratory X-ray Grating-based Phase-contrast Computed Tomography.
2016. Scientific reports, 6 (4), 24022. doi:10.1038/srep24022
Ogurreck, M.; Greving, I.; Marschall, F.; Vogt, H.; Last, A.; do Rosario, J. J.; Leib, E. W.; Beckmann, F.; Wilde, F.; Müller, M.
Layout and first results of the nanotomography endstation at the P05 beamline at PETRA III.
2016. XRM 2014 : Proceedings of the 12th International Conference on X-Ray Microscopy, Melbourne, AUS, October 26-31, 2014. Ed.: M.D. De Jonge, 020008/1–5, American Institute of Physics (AIP). doi:10.1063/1.4937502
Layout and first results of the nanotomography endstation at the P05 beamline at PETRA III.
2016. XRM 2014 : Proceedings of the 12th International Conference on X-Ray Microscopy, Melbourne, AUS, October 26-31, 2014. Ed.: M.D. De Jonge, 020008/1–5, American Institute of Physics (AIP). doi:10.1063/1.4937502
Schüttler, M.; Meyer, P.; Schaff, F.; Yaroshenko, A.; Kunka, D.; Besser, H.; Pfeiffer, F.; Mohr, J.
Height control for small periodic structures using x-ray radiography.
2016. Measurement science and technology, 27 (2), 025015. doi:10.1088/0957-0233/27/2/025015
Height control for small periodic structures using x-ray radiography.
2016. Measurement science and technology, 27 (2), 025015. doi:10.1088/0957-0233/27/2/025015
Nazmov, V.; Reznikova, E.; Mohr, J.; Voigt, A.
A method of mechanical stabilization of ultra-high-AR microstructures.
2016. Journal of materials processing technology, 231, 319–325. doi:10.1016/j.jmatprotec.2015.12.002
A method of mechanical stabilization of ultra-high-AR microstructures.
2016. Journal of materials processing technology, 231, 319–325. doi:10.1016/j.jmatprotec.2015.12.002
2015
Trimborn, B.; Meyer, P.; Kunka, D.; Zuber, M.; Albrecht, F.; Kreuer, S.; Volk, T.; Baumbach, T.; Koenig, T.
Imaging properties of high aspect ratio absorption gratings for use in preclinical x-ray grating interferometry.
2015. Physics in medicine and biology, 61 (2), 527–541. doi:10.1088/0031-9155/61/2/527
Imaging properties of high aspect ratio absorption gratings for use in preclinical x-ray grating interferometry.
2015. Physics in medicine and biology, 61 (2), 527–541. doi:10.1088/0031-9155/61/2/527
Koch, F. J.; Schröter, T. J.; Kunka, D.; Meyer, P.; Meiser, J.; Faisal, A.; Khalil, M. I.; Birnbacher, L.; Viermetz, M.; Walter, M.; Schulz, J.; Pfeiffer, F.; Mohr, J.
Note: Gratings on low absorbing substrates for x-ray phase contrast imaging.
2015. Review of scientific instruments, 86, 126114/1–3. doi:10.1063/1.4939055
Note: Gratings on low absorbing substrates for x-ray phase contrast imaging.
2015. Review of scientific instruments, 86, 126114/1–3. doi:10.1063/1.4939055
Aligodarz, M. T.; Klymyshyn, D. M.; Rashidian, A.; Börner, M.; Shafai, L.; Mohr, J.
Investigations on photoresist-based artificial dielectrics with tall-embedded metal grids and their resonator antenna application.
2015. IEEE transactions on antennas and propagation, 63, 3826–3838. doi:10.1109/TAP.2015.2452966
Investigations on photoresist-based artificial dielectrics with tall-embedded metal grids and their resonator antenna application.
2015. IEEE transactions on antennas and propagation, 63, 3826–3838. doi:10.1109/TAP.2015.2452966
Nazmov, V.; Mohr, J.; Greving, I.; Ogurreck, M.; Wilde, F.
Modified x-ray polymer refractive cross lens with adiabatic contraction and its realization.
2015. Journal of micromechanics and microengineering, 25, 055010/1–7. doi:10.1088/0960-1317/25/5/055010
Modified x-ray polymer refractive cross lens with adiabatic contraction and its realization.
2015. Journal of micromechanics and microengineering, 25, 055010/1–7. doi:10.1088/0960-1317/25/5/055010
Nazmov, V.; Reznikova, E.; Mohr, J.; Schulz, J.; Voigt, A.
Development and characterization of ultra high aspect ratio microstructures made by ultra deep X-ray lithography.
2015. Journal of materials processing technology, 225, 170–177. doi:10.1016/j.jmatprotec.2015.05.030
Development and characterization of ultra high aspect ratio microstructures made by ultra deep X-ray lithography.
2015. Journal of materials processing technology, 225, 170–177. doi:10.1016/j.jmatprotec.2015.05.030
Koch, F. J.; Marschall, F.; Meiser, J.; Markus, O.; Faisal, A.; Schröter, T.; Meyer, P.; Kunka, D.; Last, A.; Mohr, J.
Increasing the aperture of x-ray mosaic lenses by freeze drying.
2015. Journal of micromechanics and microengineering, 25 (7), Art. Nr. 075015. doi:10.1088/0960-1317/25/7/075015
Increasing the aperture of x-ray mosaic lenses by freeze drying.
2015. Journal of micromechanics and microengineering, 25 (7), Art. Nr. 075015. doi:10.1088/0960-1317/25/7/075015
Ruiz-Yaniz, M.; Zanette, I.; Rack, A.; Weitkamp, T.; Meyer, P.; Mohr, J.; Pfeiffer, F.
X-ray-refractive-index measurements at photon energies above 100 keV with a grating interferometer.
2015. Physical review / A, 91, 033803/1–5. doi:10.1103/PhysRevA.91.033803
X-ray-refractive-index measurements at photon energies above 100 keV with a grating interferometer.
2015. Physical review / A, 91, 033803/1–5. doi:10.1103/PhysRevA.91.033803
Ruiz-Yaniz, M.; Koch, F.; Zanette, I.; Rack, A.; Meyer, P.; Kunka, D.; Hipp, A.; Mohr, J.; Pfeiffer, F.
X-ray grating interferometry at photon energies over 180 keV.
2015. Applied physics letters, 106, 151105/1–4. doi:10.1063/1.4917293
X-ray grating interferometry at photon energies over 180 keV.
2015. Applied physics letters, 106, 151105/1–4. doi:10.1063/1.4917293
Sarapata, A.; Willner, M.; Walter, M.; Duttenhofer, T.; Kaiser, K.; Meyer, P.; Braun, C.; Fingerle, A.; Noel, P. B.; Pfeiffer, F.; Herzen, J.
Quantitative imaging using high-energy X-ray phase-contrast CT with a 70 kVp polychromatic X-ray spectrum.
2015. Optics express, 23, 523–535. doi:10.1364/OE.23.000523
Quantitative imaging using high-energy X-ray phase-contrast CT with a 70 kVp polychromatic X-ray spectrum.
2015. Optics express, 23, 523–535. doi:10.1364/OE.23.000523
2014
Meyer, P.; Pantenburg, F. J.
A Monte Carlo study of the primary absorbed energy redistribution in X-ray lithography.
2014. Microsystem technologies, 20 (10-11), 1881–1889. doi:10.1007/s00542-013-1966-x
A Monte Carlo study of the primary absorbed energy redistribution in X-ray lithography.
2014. Microsystem technologies, 20 (10-11), 1881–1889. doi:10.1007/s00542-013-1966-x
Pelzer, G.; Zang, A.; Anton, G.; Bayer, F.; Horn, F.; Kraus, M.; Rieger, J.; Ritter, A.; Wandner, J.; Weber, T.; Fauler, A.; Fiederle, M.; Wong, W. S.; Campbell, M.; Meiser, J.; Meyer, P.; Mohr, J.; Michel, T.
Energy weighted x-ray dark-field imaging.
2014. Optics express, 22 (20), 24507–24515. doi:10.1364/OE.22.024507
Energy weighted x-ray dark-field imaging.
2014. Optics express, 22 (20), 24507–24515. doi:10.1364/OE.22.024507
Hipp, A.; Willner, M.; Herzen, J.; Auweter, S.; Chabior, M.; Meiser, J.; Achterhold, K.; Mohr, J.; Pfeiffer, F.
Energy-resolved visibility analysis of grating interferometers operated at polychromatic X-ray sources.
2014. Optics express, 22 (25), 30394–30409. doi:10.1364/OE.22.030394
Energy-resolved visibility analysis of grating interferometers operated at polychromatic X-ray sources.
2014. Optics express, 22 (25), 30394–30409. doi:10.1364/OE.22.030394
Fu, J.; Willner, M.; Chen, L.; Tan, R.; Achterhold, K.; Bech, M.; Herzen, J.; Kunka, D.; Mohr, J.; Pfeiffer, F.
Helical differential X-ray phase-contrast computed tomography.
2014. Physica medica, 30 (3), 374–379. doi:10.1016/j.ejmp.2014.01.005
Helical differential X-ray phase-contrast computed tomography.
2014. Physica medica, 30 (3), 374–379. doi:10.1016/j.ejmp.2014.01.005
Nazmov, V.; Mohr, J.; Vogt, H.; Simon, R.; Diabate, S.
Multi-field X-ray microscope based on array of refractive lenses.
2014. Journal of micromechanics and microengineering, 24 (7), Art.Nr.: 075005/1–9. doi:10.1088/0960-1317/24/7/075005
Multi-field X-ray microscope based on array of refractive lenses.
2014. Journal of micromechanics and microengineering, 24 (7), Art.Nr.: 075005/1–9. doi:10.1088/0960-1317/24/7/075005
Lang, S.; Zanette, I.; Dominietto, M.; Langer, M.; Rack, A.; Schulz, G.; Le Duc, G.; David, C.; Mohr, J.; Pfeiffer, F.; Müller, B.; Weitkamp, T.
Experimental comparison of grating- and propagation-based hard X-ray phase tomography of soft tissue.
2014. Journal of applied physics, 116, 154903/1–14. doi:10.1063/1.4897225
Experimental comparison of grating- and propagation-based hard X-ray phase tomography of soft tissue.
2014. Journal of applied physics, 116, 154903/1–14. doi:10.1063/1.4897225
Hilhorst, J.; Marschall, F.; Tran Thi, T. N.; Last, A.; Schülli, T. U.
Full-field X-ray diffraction microscopy using polymeric compound refractive lenses.
2014. Journal of applied crystallography, 47 (6), 1882–1888. doi:10.1107/S1600576714021256
Full-field X-ray diffraction microscopy using polymeric compound refractive lenses.
2014. Journal of applied crystallography, 47 (6), 1882–1888. doi:10.1107/S1600576714021256
Kunka, D.; Mohr, J.; Nazmov, V.; Meiser, J.; Meyer, P.; Amberger, M.; Koch, F.; Schulz, J.; Walter, M.; Duttenhofer, T.; Voigt, A.; Ahrens, G.; Grützner, G.
Characterization method for new resist formulations for HAR patterns made by X-ray lithography.
2014. Microsystem technologies, 20, 2023–2029. doi:10.1007/s00542-013-2055-x
Characterization method for new resist formulations for HAR patterns made by X-ray lithography.
2014. Microsystem technologies, 20, 2023–2029. doi:10.1007/s00542-013-2055-x
Meiser, J.; Amberger, M.; Willner, M.; Kunka, D.; Meyer, P.; Koch, F.; Hipp, A.; Walter, M.; Pfeiffer, F.; Mohr, J.
Increasing the field of view of X-ray phase contrast imaging using stitched gratings on low absorbent carriers.
2014. Medical Imaging 2014 : Physics of Medical Imaging, San Diego, Calif., February 15-20, 2014. Ed.: B. R. Whiting, Article no 903355, Society of Photo-optical Instrumentation Engineers (SPIE). doi:10.1117/12.2043479
Increasing the field of view of X-ray phase contrast imaging using stitched gratings on low absorbent carriers.
2014. Medical Imaging 2014 : Physics of Medical Imaging, San Diego, Calif., February 15-20, 2014. Ed.: B. R. Whiting, Article no 903355, Society of Photo-optical Instrumentation Engineers (SPIE). doi:10.1117/12.2043479
Heneka, J.; Guttmann, M.; Plewa, K.; Mohr, J.; Hanemann, T.; Saile, V.
LIGA2.X process for mass production of single polymeric LIGA micro parts.
2014. Microsystem technologies, 20, 1955–1960. doi:10.1007/s00542-013-2015-5
LIGA2.X process for mass production of single polymeric LIGA micro parts.
2014. Microsystem technologies, 20, 1955–1960. doi:10.1007/s00542-013-2015-5
Vogt, H.; Last, A.; Mohr, J.; Marschall, F.; Mettendorf, K. U.; Eisenhower, R.; Simon, M.
Low-cost rolled X-ray prism lenses to increase photon flux density in diffractometry experiments.
2014. Powder diffraction, 29 (2), 118–122. doi:10.1017/S0885715614000177
Low-cost rolled X-ray prism lenses to increase photon flux density in diffractometry experiments.
2014. Powder diffraction, 29 (2), 118–122. doi:10.1017/S0885715614000177
Fu, J.; Biernath, T.; Tan, R.; Willner, M.; Wang, Q.; Amberger, M.; Meiser, J.; Mohr, J.; Walter, M.; Schulz, J.; Herzen, J.; Bech, M.; Pfeiffer, F.
Cone-beam differential phase-contrast laminography with x-ray tube source.
2014. epl, 106 (June), 6802/1–6. doi:10.1209/0295-5075/106/68002
Cone-beam differential phase-contrast laminography with x-ray tube source.
2014. epl, 106 (June), 6802/1–6. doi:10.1209/0295-5075/106/68002
Marschall, F.; Last, A.; Simon, M.; Kluge, M.; Nazmov, V.; Vogt, H.; Ogurreck, M.; Greving, I.; Mohr, J.
X-ray full field microscopy at 30 KeV.
2014. Journal of physics / Conference Series, 499 (1), Art.Nr.: 012007/1–6. doi:10.1088/1742-6596/499/1/012007
X-ray full field microscopy at 30 KeV.
2014. Journal of physics / Conference Series, 499 (1), Art.Nr.: 012007/1–6. doi:10.1088/1742-6596/499/1/012007
Yaroshenko, A.; Bech, M.; Potdevin, G.; Malecki, A.; Biernath, T.; Wolf, J.; Tapfer, A.; Schüttler, M.; Meiser, J.; Kunka, D.; Amberger, M.; Mohr, J.; Pfeiffer, F.
Non-binary phase gratings for x-ray imaging with a compact Talbot interferometer.
2014. Optics express, 22 (1), 547–556. doi:10.1364/OE.22.000547
Non-binary phase gratings for x-ray imaging with a compact Talbot interferometer.
2014. Optics express, 22 (1), 547–556. doi:10.1364/OE.22.000547
2013
Willner, M.; Bech, M.; Herzen, J.; Zanette, I.; Hahn, D.; Kenntner, J.; Mohr, J.; Rack, A.; Weitkamp, T.; Pfeiffer, F.
Quantitative X-ray phase-contrast computed tomography at 82 keV.
2013. Optics express, 21 (4), 4155–4166. doi:10.1364/OE.21.004155
Quantitative X-ray phase-contrast computed tomography at 82 keV.
2013. Optics express, 21 (4), 4155–4166. doi:10.1364/OE.21.004155
Rutishauser, S.; Bednarzik, M.; Zanette, I.; Weitkamp, T.; Börner, M.; Mohr, J.; David, C.
Fabrication of two-dimensional hard X-ray diffraction gratings.
2013. Microelectronic engineering, 101, 12–16. doi:10.1016/j.mee.2012.08.025
Fabrication of two-dimensional hard X-ray diffraction gratings.
2013. Microelectronic engineering, 101, 12–16. doi:10.1016/j.mee.2012.08.025
Nazmov, V.; Mohr, J.; Simon, R.
Mosaic-like micropillar array for hard x-ray focusing - One-dimensional version.
2013. Journal of Micromechanics and Microengineering, 23 (9), 095015/1–8. doi:10.1088/0960-1317/23/9/095015
Mosaic-like micropillar array for hard x-ray focusing - One-dimensional version.
2013. Journal of Micromechanics and Microengineering, 23 (9), 095015/1–8. doi:10.1088/0960-1317/23/9/095015
Jensen, T. H.; Bech, M.; Binderup, T.; Böttiger, A.; David, C.; Weitkamp, T.; Zanette, I.; Reznikova, E.; Mohr, J.; Rank, F.; Feidenhans’l, R.; Kjaer, A.; Hojgaard, L.; Pfeiffer, F.
Imaging of Metastatic Lymph Nodes by X-ray Phase-Contrast Micro-Tomography.
2013. PLoS one, 8 (1), e54047. doi:10.1371/journal.pone.0054047
Imaging of Metastatic Lymph Nodes by X-ray Phase-Contrast Micro-Tomography.
2013. PLoS one, 8 (1), e54047. doi:10.1371/journal.pone.0054047
Greiner, F.; Quednau, S.; Dassinger, F.; Sarwar, R.; Schlaak, H. F.; Guttmann, M.; Meyer, P.
Fabrication techniques for multiscale 3D-MEMS with vertical metal micro- and nanowire integration.
2013. Journal of micromechanics and microengineering, 23 (2), 025018/1–12. doi:10.1088/0960-1317/23/2/025018
Fabrication techniques for multiscale 3D-MEMS with vertical metal micro- and nanowire integration.
2013. Journal of micromechanics and microengineering, 23 (2), 025018/1–12. doi:10.1088/0960-1317/23/2/025018
Fukui, H.; Simon, M.; Nazmov, V.; Mohr, J.; Evans-Lutterodt, K.; Stein, A.; Baron, A. Q. R.
Large-aperture refractive lenses for momentum-resolved spectroscopy with hard X-rays.
2013. Journal of synchrotron radiation, 20 (4), 591–595. doi:10.1107/S0909049513011722
Large-aperture refractive lenses for momentum-resolved spectroscopy with hard X-rays.
2013. Journal of synchrotron radiation, 20 (4), 591–595. doi:10.1107/S0909049513011722
Ogurreck, M.; Wilde, F.; Herzen, J.; Beckmann, F.; Nazmov, V.; Mohr, J.; Haibel, A.; Müller, M.; Schreyer, A.
The nanotomography endstation at the PETRA III imaging beamline.
2013. Journal of Physics: Conference Series, 425, 182002/1–5. doi:10.1088/1742-6596/425/18/182002
The nanotomography endstation at the PETRA III imaging beamline.
2013. Journal of Physics: Conference Series, 425, 182002/1–5. doi:10.1088/1742-6596/425/18/182002
Thüring, T.; Hämmerle, S.; Weiss, S.; Nüesch, J.; Meiser, J.; Mohr, J.; David, C.
Compact hard X-ray grating interferometry for table top phase contrast micro CT.
2013. Physics of Medical Imaging : Proc.of SPIE Medical Imaging Conf.2013, Lake Buena Vista, FL., February 11-14 2013. Hrsg.: R. Nishikawa, 866813/1–7, Society of Photo-optical Instrumentation Engineers (SPIE). doi:10.1117/12.2006865
Compact hard X-ray grating interferometry for table top phase contrast micro CT.
2013. Physics of Medical Imaging : Proc.of SPIE Medical Imaging Conf.2013, Lake Buena Vista, FL., February 11-14 2013. Hrsg.: R. Nishikawa, 866813/1–7, Society of Photo-optical Instrumentation Engineers (SPIE). doi:10.1117/12.2006865
Patent
A. Last, Röntgenlinsenanordnung, sowie Herstellungsverfahren dafür, Patent DE102017123851B4, Anmeldedatum 13.10.2017
J. Mohr, J. Schulz, E. Reznikova, F. Pfeiffer, Gratings for X-ray imaging, consisting of at least two materials, US 9230703; 13/703,826 (2016)
J. Mohr, A. Last, V. Nazmov, M. Simon, Th. Grund, J. Kenntner, Resiststruktur zur Herstellung einer röntgenoptischen Gitterstruktur, Patent WO2012055495A1 (2011)
A. Last, Vorrichtung zur Konzentration und/oder Kollimation eines Röntgenstrahls, Verfahren zu ihrer Herstellung und Spiralspiegeloptik für Röntgenstrahlen, Patent DE102011102446A1 (2011)
M. Simon, A. Last, V. Nazmov, E. Reznikova, Verfahren zur Herstellung von Mikrostrukturen, Patent DE102009019393A1 (2009)