Institute of Microstructure Technology (IMT)


An NMR-compatible microfluidic platform enabling in situ electrochemistry.
Davoodi, H.; Nordin, N.; Bordonali, L.; Korvink, J.; MacKinnon, N.; Badilita, V.
2020. Lab on a chip, 20 (17), 3202–3212. doi:10.1039/D0LC00364F
Integrated impedance sensors in a microfluidic system: Toward a fully automated high throughput nmr spectroscopy.
Nassar, O.; Jouda, M.; Korvink, J.; Mager, D.; Mackinnon, N.
2020. 24th International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2020; Virtual, Online; 4 through 9 October 2020, 723–724, Chemical and Biological Microsystems Society (CBMS)
A Nuclear Magnetic Resonance (NMR) Platform for Real-Time Metabolic Monitoring of Bioprocesses.
Mehendale, N.; Jenne, F.; Joshi, C.; Sharma, S.; Masakapalli, S. K.; MacKinnon, N.
2020. Molecules, 25 (20), Art.-Nr.: 4675. doi:10.3390/molecules25204675
Efficient System Wide Metabolic Pathway Comparisons in Multiple Microbes Using Genome to KEGG Orthology (G2KO) Pipeline Tool.
Joshi, C.; Sharma, S.; MacKinnon, N.; Masakapalli, S. K.
2020. Interdisciplinary sciences / Computational life sciences, 12 (3), 311–322. doi:10.1007/s12539-020-00375-7
Towards 3D compositional control of addressable biofunctional sites within a microfluidic environment.
Nordin, N.; Bordonali, L.; Korvink, J. G.; Badilita, V.; MacKinnon, N.
2020. 21st International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2017; Savannah, Giorgia, 22 October 2017 through 26 October 2017, 1358–1360, Chemical and Biological Microsystems Society (CBMS)
Laser-induced hierarchical carbon patterns on polyimide substrates for flexible urea sensors.
Mamleyev, E. R.; Heissler, S.; Nefedov, A.; Weidler, P. G.; Nordin, N.; Kudryashov, V. V.; Länge, K.; MacKinnon, N.; Sharma, S.
2019. npj flexible electronics, 3 (1), Article no 2. doi:10.1038/s41528-018-0047-8
”Small is beautiful” in NMR.
Korvink, J. G.; MacKinnon, N.; Badilita, V.; Jouda, M.
2019. Journal of magnetic resonance, 306, 112–117. doi:10.1016/j.jmr.2019.07.012
Broadband and multi-resonant sensors for NMR.
Davoodi, H.; Jouda, M.; Korvink, J. G.; MacKinnon, N.; Badilita, V.
2019. Progress in nuclear magnetic resonance spectroscopy. doi:10.1016/j.pnmrs.2019.05.001
Motion prediction enables simulated MR-imaging of freely moving model organisms.
Reischl, M.; Jouda, M.; MacKinnon, N.; Fuhrer, E.; Bakhtina, N.; Bartschat, A.; Mikut, R.; Korvink, J. G.
2019. PLoS Computational Biology, 15 (12), e1006997. doi:10.1371/journal.pcbi.1006997
NMR-based metabolomic profiling of urine: Evaluation for application in prostate cancer detection.
MacKinnon, N.; Ge, W.; Han, P.; Siddiqui, J.; Wei, J. T.; Raghunathan, T.; Chinnaiyan, A. M.; Rajendiran, T. M.; Ramamoorthy, A.
2019. Natural product communications, 14 (5). doi:10.1177/1934578X19849978
Spatial and Temporal Control Over Multilayer Bio-Polymer Film Assembly and Composition.
Nordin, N.; Bordonali, L.; Badilita, V.; MacKinnon, N.
2019. Macromolecular bioscience, 19 (4), Article: 1800372. doi:10.1002/mabi.201800372
Parahydrogen based NMR hyperpolarisation goes micro: an alveolus for small molecule chemosensing.
Bordonali, L.; Nordin, N.; Fuhrer, E.; MacKinnon, N.; Korvink, J. G.
2019. Lab on a chip, 19 (3), 503–512. doi:10.1039/C8LC01259H
Automatic adaptive gain for magnetic resonance sensitivity enhancement.
Jouda, M.; Fuhrer, E.; Silva, P.; Korvink, J. G.; MacKinnon, N.
2019. Analytical chemistry. doi:10.1021/acs.analchem.8b05148
Flexible Carbon-based Urea Sensor by Laser Induced Carbonisation of Polyimide.
Mamleyev, E. R.; Nordin, N.; Heissler, S.; Länge, K.; MacKinnon, N.; Sharma, S.
2018. International Flexible Electronics Technology Conference (IFETC), Ottawa, ON, Canada, 7-9 August 2018, Art.Nr. 8583942, Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/IFETC.2018.8583942
Nuclear Magnetic Resonance Microscopy for In Vivo Metabolomics, Digitally Twinned by Computational Systems Biology, Needs a Sensitivity Boost.
Korvink, J. G.; Badilita, V.; Bordonali, L.; Jouda, M.; Mager, D.; MacKinnon, N.
2018. Sensors and materials, 30 (2), 157–166. doi:10.18494/SAM.2018.1711
3D Carbon Scaffolds for Neural Stem Cell Culture and Magnetic Resonance Imaging.
Fuhrer, E.; Bäcker, A.; Kraft, S.; Gruhl, F. J.; Kirsch, M.; MacKinnon, N.; Korvink, J. G.; Sharma, S.
2018. Advanced healthcare materials, 7 (4), Art.Nr. 1700915. doi:10.1002/adhm.201700915
Fast Prototyping of Microtubes with embedded sensing elements made possible with an inkjet printing and rolling process.
Wang, N.; Meissner, M. V.; MacKinnon, N.; Luchnikov, V.; Mager, D.; Korvink, J. G.
2017. Journal of micromechanics and microengineering, 28 (2), Art. Nr.: 025003. doi:10.1088/1361-6439/aa7a61
Micro and nano patternable magnetic carbon.
Sharma, S.; Rostas, A. M.; Bordonali, L.; MacKinnon, N.; Weber, S.; Korvink, J. G.
2016. Journal of applied physics, 120 (23), Art. Nr.: 235107. doi:10.1063/1.4972476
Novel selective TOCSY method enables NMR spectral elucidation of metabolomic mixtures.
MacKinnon, N.; While, P. T.; Korvink, J. G.
2016. Journal of magnetic resonance, 272, 147–157. doi:10.1016/j.jmr.2016.09.011
A microwave resonator integrated on a polymer microfluidic chip.
Kiss, S. Z.; Rostas, A. M.; Heidinger, L.; Spengler, N.; Meissner, M. V.; MacKinnon, N.; Schleicher, E.; Weber, S.; Korvink, J. G.
2016. Journal of magnetic resonance, 270, 169–175. doi:10.1016/j.jmr.2016.07.008
Advanced two-photon photolithography for patterning of transparent, electrically conductive ionic liquid-polymer nanostructures.
Bakhtina, N. A.; MacKinnon, N.; Korvink, J. G.
2016. Laser 3D Manufacturing III. Ed.: B. Gu, 97380C, Society of Photo-optical Instrumentation Engineers (SPIE). doi:10.1117/12.2218272
Heteronuclear micro-helmholtz coil facilitates μm-range spatial and sub-Hz spectral resolution NMR of nL-volume samples on customisable microfluidic chips.
Spengler, N.; Höfflin, J.; Moazenzadeh, A.; Mager, D.; MacKinnon, N.; Badilita, V.; Wallrabe, U.; Korvink, J. G.
2016. PLoS one, 11 (1), e0146384. doi:10.1371/journal.pone.0146384
Novel ionic liquid - Polymer composite and an approach for its patterning by conventional photolithography.
Bakhtina, N. A.; Voigt, A.; Mackinnon, N.; Ahrens, G.; Gruetzner, G.; Korvink, J. G.
2015. 28th IEEE International Conference on Micro Electro Mechanical Systems, MEMS 2015; Estoril; Portugal; 18 January 2015 through 22 January 2015, 97–101. doi:10.1109/MEMSYS.2015.7050895
Two-Photon Nanolithography Enhances the Performance of an Ionic Liquid-Polymer Composite Sensor.
Bakhtina, N. A.; Löffelmann, U.; MacKinnon, N.; Korvink, J. G.
2015. Advanced Functional Materials, 25 (11), 1683–1693. doi:10.1002/adfm.201404370